
Uncertainty and Significant Figures

Astrophysics made simple

Cartoon courtesy of Lab-initio.com

<u>Uncertainty in Measurement</u>

A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Why Is there Uncertainty?

 Measurements are performed with instruments

No instrument can read to an infinite number of decimal places

Which of these balances has the greatest uncertainty in measurement?

Precision and Accuracy

<u>Accuracy</u> refers to the agreement of a particular value with the true value.

<u>Precision</u> refers to the degree of agreement among several measurements made in the same manner.

precise

<u>Random Error</u> (Indeterminate Error) measurement has an equal probability of being high or low.

<u>Systematic Error</u> (Determinate Error) -Occurs in the same direction each time (high or low), often resulting from poor technique or incorrect calibration.

<u>Nonzero integers</u> always count as significant figures.

3456 has 4 significant figures

<u>Zeros</u>

- Leading zeros do not count as significant figures.

0.0486 has 3 significant figures

Captive zeros always count as significant figures.

16.07 has4 significant figures

Zeros A decimal to the right of trailing zeros makes zeros significant.

9.300 has4 significant figures

<u>Zeros</u>

Trailing zeros are significant only if the number contains a decimal point.

220. has3 significant figures

<u>Exact numbers</u> have an *infinite* number of significant figures.

1 inch = 2.54 cm, exactly

Sig Fig Practice #1

How many significant figures in each of the following?

- <u>1.0070 m \rightarrow 5 sig figs</u>
- <u>17.10 kg \rightarrow 4 sig figs</u>
- <u>100,890 L \rightarrow 5 sig figs</u>
- $3.29 \times 10^3 s \rightarrow 3 sig figs$
- $0.0054 \text{ cm} \rightarrow 2 \text{ sig figs}$
 - $3,200,000 \rightarrow 2 \text{ sig figs}$

Rules for Significant Figures in Mathematical Operations

<u>Multiplication and Division</u>: # sig figs in the result equals the number in the least precise measurement used in the calculation.

> $6.38 \times 2.0 =$ 12.76 \rightarrow 13 (2 sig figs)

Sig Fig Practice #2

Calculation	<u>Calculator says:</u>	Answer
3.24 m x 7.0 m	22.68 m ²	23 m ²
100.0 g ÷ 23.7 cm ³	4.219409283 g/cm ³	4.22 g/cm ³
0.02 cm x 2.371 cm	0.04742 cm ²	0.05 cm ²
710 m ÷ 3.0 s	236.6666667 m/s	240 m/s
1818.2 lb x 3.23 ft	5872.786 lb.ft	5870 lb·ft
1.030 g ÷ 2.87 mL	2.9561 g/mL	2.96 g/mL

Rules for Significant Figures in Mathematical Operations

<u>Addition and Subtraction</u>: The number of decimal places in the result equals the number of decimal places in the least precise measurement.

6.8 + 11.934 = $18.734 \rightarrow 18.7$ (3 sig figs)

Sig Fig Practice #3

Calculation	Calculator says:	Answer
3.24 m + 7.0 m	10.24 m	10.2 m
100.0 g - 23.73 g	76.27 g	76.3 g
0.02 cm + 2.371 cm	2.391 cm	2.39 cm
713.1 L - 3.872 L	709.228 L	709.2 L
1818.2 lb + 3.37 lb	1821.57 lb	1821.6 lb
2.030 mL - 1.870 m	L 0.16 mL	0.160 mL