\qquad Date \qquad BIk \qquad

Dercent Composition 3.5

Determining Formulas - Compositional Analysis 3.5

Look at your periodic table:

- Do any elements share the same \qquad (atomic mass)?
- No - so you can identify an element from its molar mass
- You can also identify a \qquad from its mass
- This is what a mass spectrometer does (as seen on CSI)

Percentage Composition:

- Percent of a compound's \qquad contributed by each type of atom in the compound.
- You can find it from its formula

Example: Percentage Composition of $\mathrm{H}_{2} \mathrm{O}$:

- Calculate the \qquad :
- $2 \mathrm{H}+0=2(1.01)+16.0=$ \qquad
- Thus there is 2.01 g H and 16.0 g O
- Find the percentage of each part $\frac{\text { mass of one }}{\text { mass of total }}$
- $\% \mathrm{H}=\frac{2.02 \mathrm{~g}}{18.02 \mathrm{~g}} \times 100=$ \qquad
- $\% \mathrm{O}=\frac{16.0 \mathrm{~g}}{18.02 \mathrm{~g}} \times 100=$ \qquad

WORKBOOK PAGE 143: complete the problems

Types of Formulas: Example Butane

- Every compound has \qquad formulas
- \qquad formula- how the compound actually exists
- Butane is $\mathrm{C}_{4} \mathrm{H}_{10}$

○ \qquad formula - the simplest ratio

- Butane simplifies to $\mathrm{C}_{2} \mathrm{H}_{5}$

○ \qquad formula - a diagram showing the arrangement of molecules

Finding Empirical Formulas from \% Composition:

- Step 1- change \% to \qquad
- Assume there are a 100 g of the substance so the conversion is easy
- Step 2 - Convert grams to \qquad
- Use molar masses from the periodic table
- Step 3- Find the \qquad of the elements
- Divide by the \qquad value
- Step 4- Make sure the ratios are whole numbers
- Write formula- $\mathrm{C}_{1.5} \mathrm{O}_{2}$ would become $\mathrm{C}_{3} \mathrm{O}_{4}$
\qquad Date \qquad BIk \qquad

Example: Determine the empirical formula for a compound composed of $80.0 \% \mathrm{C}$ and $20.0 \% \mathrm{H}$

- Step one: Change to grams
- 80.0\% C and 20.0\% H becomes \qquad C and 20.0 g H
- Step 2: Convert to moles
- $80.0 \mathrm{~g} \mathrm{H} \mathrm{x} \frac{1 \mathrm{~mol}}{12.0 \mathrm{~g} \mathrm{H}}=$ \qquad
- $20.0 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol}}{1.0 \mathrm{~g} \mathrm{H}}=$ \qquad
- Step 3: Find the ratio of elements
$0 \div$ by smallest which is Carbon with \qquad moles
- $\frac{6.67}{6.67}=1 \mathrm{C}$
- $\frac{20.0}{6.67}=$ \qquad
- Step 4: Make sure the ratios are \qquad numbers
- $1 \mathrm{C}: 3 \mathrm{H}$ - yup whole numbers
- CH_{3}

WORKBOOK P. 145-Complete Practice Problems 1-3

Determining the Molecular Formula

- Recall that the molecular formula is the actual number of each type of atom in a molecule

Molecular formula $=$ \qquad

- Step one: calculate the \qquad mass of the empirical formula
- Step two: divide molar mass of molecular formula (usually given in question) by the molar mass of the \qquad formula
- Step three: \qquad the empirical formula by this factor (empirical formula) factor

Example: The empirical formula of glucose is $\mathrm{CH}_{2} \mathrm{O}$ and its molar mass is 180.0 g . Determine the molecular formula.

- Step one- molar mass of $\mathrm{CH}_{2} \mathrm{O}$
- $+2(1.01) g+16.0 g=30.0 g$
- Step two- divide molar mass by empirical molar mass to get the factor
- $\frac{180.0 \mathrm{~g}}{30.0 \mathrm{~g}}=6$
- We need 6 times as much of everything!!
- $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}=$ \qquad

WORKBOOK P. 147 Practice Problems 1-3

HOMEWORK: Workbook-

- 3.5 all practice problems 3.5
- Review Questions p. 149 1-7, 9, 11

Name \qquad Date \qquad BIk \qquad

Molar Concentration- 3.6

Concentration

- The \qquad of a chemical in a solution or the amount of solute per volume of a solution
- $\quad \mathrm{g} / \mathrm{mL}, \mathrm{mg} / \mathrm{L}$, or parts per million
- High Concentration

Low Concentration

Molarity M

- It is a measure of the amount of \qquad of solute in solution per \qquad of solvent
- Allows us to compare number of \qquad in the same volume of different solutions
- Units are \qquad which is called M
- Also called \qquad concentration
- Square brackets [] are used to indicate it

Examples:

- $\quad 1 \mathrm{M} \mathrm{HNO}_{3}$ means \qquad of HNO3 per liter of solution
- 6.02×1023 molecules per liter
- $2 \mathrm{M} \mathrm{HNO}_{3}$ means \qquad of HNO3 per liter
- 2(6.02x1023) molecules
- So one liter of $2 \mathrm{M} \mathrm{HNO}_{3}$ has \qquad as many molecules as one liter of $1 \mathrm{~m} \mathrm{HNO}_{3}$

To Convert

- Multiply or divide by M
- If you have moles x by \qquad 1L
- If you have L of solution x by \qquad

Examples: 1.23 L of 3.00 M KCl = \qquad mol KCl
$-1.23 \mathrm{Lx} \frac{\mathbf{3 . 0 0 \mathrm { mol }}}{1 \mathrm{~L}}=\quad \mathrm{mol} \mathrm{KCl}$

WORKBOOK P. 153- Practice Problems 1-4

Preparing Solutions:

- A standard solution is a term for a solution with a known concentration
- To prepare it you mix a mass of \qquad and a volume of water
- Prepare \qquad $\mathrm{CaCl}_{2}(a q)$
- Measure out 1 mol of CaCl 2 which is 110.94 g and add water until the solution \qquad one liter
\qquad
\qquad BIk \qquad

Try it! Describe how to prepare 0.055 L of 0.20 M KCL from the solid

- $0.055 \mathrm{~L} x$ \qquad x \qquad $=$ g KCl

Example Problem: What molar concentration (M) of KCl is produced by measuring out 1.0 g KCL and adding water up to 0.350 L of solution?

- First we need to convert grams to moles
- $1.0 \mathrm{~g} \mathrm{KCl} x$
- Now find molar concentration (mol$/ \mathrm{L})$
\circ.

WORKBOOK P. 154- Practice Problems 1-3

Multi- step Conversions:

- We know how to use molarity (M) to convert from a volume of solution to \qquad now we will determine the number of atoms or vice versa
- $1 \mathrm{~mol}=$ \qquad atoms or molecules or ions

Example: How many chlorine ions are in 0.025 L of $0.30 \mathrm{M} \mathrm{AlCl}_{3}$?

- 0.025 Lx

WORKBOOK P- 157: Practice Problems 1-5
HOMEWORK:

- 3.6 Review Questions 1-9, 12,13,17

