Chapter 3.5
Determining Formulas Composition Analysis

Look at your periodic table

- Do any elements share the same molar mass (atomic mass)?
- No - so you can identify an element from its molar mass
- You can also identify a compound from its mass
- This is what a mass spectrometer does (as seen on CSI)

Percentage Composition

- Percent of a compound's mass contributed by each type of atom in the compound.
- You can find it from its formula

Percentage Composition of $\mathrm{H}_{2} \mathrm{O}$

- Calculate the molar mass:
- $2 \mathrm{H}+0=2(1.01)+16.0=18.02 \mathrm{~g} / \mathrm{mol}$
- Thus there is 2.01 g H and 16.0 g O
- Find the percentage of each part $\frac{\text { mass of one }}{\text { mass of total }}$
- $\% \mathrm{H}=\frac{2.02 \mathrm{~g}}{18.02 g} \times 100=11.2 \%$
- $\% \mathrm{O}=\frac{16.0 \mathrm{~g}}{18.02 \mathrm{~g}} \times 100=88.8 \%$

Workbook p. 143

- Please complete the practice problems 1-3
- Look at the sample problem for help

Answers p. 143

1. $13 \mathrm{C}(13 \times 12.0 \mathrm{~g}) / \mathrm{mol}=156.0 \mathrm{~g} / \mathrm{mol}=75.7 \%$ $18 \mathrm{H}(18 \times 1.0 \mathrm{~g}) / \mathrm{mol}=18.0 \mathrm{~g} / \mathrm{mol}=8.7 \%$

$$
2 \mathrm{O}(2 \times 16.0 \mathrm{~g}) / \mathrm{mol}=\frac{32.0 \mathrm{~g} / \mathrm{mol}}{206.0 \mathrm{~g} / \mathrm{mol}} \quad=\frac{15.5 \%}{99.9 \%}
$$

2. $2 \mathrm{~N}(2 \times 14.0 \mathrm{~g}) / \mathrm{mol}=28.0 \mathrm{~g} / \mathrm{mol}=21.2 \%$
$8 \mathrm{H}(8 \times 1.0 \mathrm{~g}) / \mathrm{mol}=18.0 \mathrm{~g} / \mathrm{mol}=6.1 \%$
$1 \mathrm{~S}(1 \times 32.0 \mathrm{~g}) / \mathrm{mol}=32.1 \mathrm{~g} / \mathrm{mol}=24.3 \%$
$4 \mathrm{O}(4 \times 16.0 \mathrm{~g}) / \mathrm{mol}=\frac{64.0 \mathrm{~g} / \mathrm{mol}}{132.1 \mathrm{~g} / \mathrm{mol}}=\frac{48.4 \%}{100.0 \%}$
3. $1 \mathrm{Mg}(1 \times 24.3 \mathrm{~g}) / \mathrm{mol}=24.3 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{~S}(1 \times 32.0 \mathrm{~g}) / \mathrm{mol}=32.1 \mathrm{~g} / \mathrm{mol}$
$4 \mathrm{O}(4 \times 16.0 \mathrm{~g}) / \mathrm{mol}=\frac{64.0 \mathrm{~g} / \mathrm{mol}}{120.4 \mathrm{~g} / \mathrm{mol}}$
$7 \mathrm{H}_{2} \mathrm{O}(7 \times 18.0 \mathrm{~g}) / \mathrm{mol}=\frac{126.0 \mathrm{~g} / \mathrm{mol}}{246.4 \mathrm{~g} / \mathrm{mol}}=51.1 \%$

Types of Formulas: Example Butane

- Every compound has three formulas
- Molecular formula- how the compound actually exists
- Butane is $\mathrm{C}_{4} \mathrm{H}_{10}$
- Empirical formula - the simplest ratio
- Butane simplifies to $\mathrm{C}_{2} \mathrm{H}_{5}$
- Structural formula - a diagram showing the arrangement of molecules

Finding Empirical Formulas from \%

- Step 1- change \% to grams
- Assume there are a 100 g of the substance so the conversion is easy
- Step 2 - Convert grams to moles
- Use molar masses from the periodic table
- Step 3- Find the ratio of the elements
- Divide by the smallest value
- Step 4- Make sure the ratios are whole numbers
- Write formula- $\mathrm{C}_{1.5} \mathrm{O}_{2}$ would become $\mathrm{C}_{3} \mathrm{O}_{4}$

Determine the empirical formula for a compound

 composed of 80.0% C and $20.0 \% \mathrm{H}$.- Step one: Change to grams
- 80.0\% C and $20.0 \% \mathrm{H}$ becomes 80.0 g C and 20.0 g H
Step 2: Convert to moles
$=80.0 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol}}{12.0 \mathrm{~g} \mathrm{H}}=6.67 \mathrm{~mol} \mathrm{C}$
$=20.0 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol}}{1.0 \mathrm{~g} \mathrm{H}}=\mathbf{2 0 . 0} \mathbf{~ m o l ~ H}$

Determine the empirical formula for a compound composed of 80.0% C and $20.0 \% \mathrm{H}$. Continued...

Step 3: Find the ratio of elements
" \div by smallest which is Carbon with 6.67 moles
$-\frac{6.67}{6.67}=1 \mathrm{C}$
$-\frac{20.0}{6.67}=\mathbf{3} \mathbf{H}$

- Step 4: Make sure the ratios are whole numbers
- 1C: 3 H - yup whole numbers
- CH_{3}

Workbook p. 145

Complete Practice Problems 1-3

Answers p. 145

1. $\quad 18.7 \mathrm{~g} \mathrm{Li} \times \frac{1 \mathrm{~mol} \mathrm{Li}}{6.9 \mathrm{~g} \mathrm{Li}}=2.7101 \mathrm{~mol} \mathrm{Li}$

$$
\begin{aligned}
& 16.3 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=1.3583 \mathrm{~mol} \mathrm{C} \\
& 65.5 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=4.0938 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

1. $\mathrm{Li}_{2} \mathrm{CO}_{3}$
2. $\mathrm{CCl}_{2} \mathrm{~F}_{2}$
3. $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
4. $9.93 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=0.8275 \mathrm{~mol} \mathrm{C}$
$58.6 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.5 \mathrm{~g} \mathrm{Cl}}=1.6507 \mathrm{~mol} \mathrm{Cl}$

$$
31.4 \mathrm{~g} \mathrm{~F} \times \frac{1 \mathrm{~mol} \mathrm{~F}}{19.0 \mathrm{~g} \mathrm{~F}}=1.6526 \mathrm{~mol} \mathrm{~F}
$$

3. $\quad 5.723 \mathrm{~g} \mathrm{Ag} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{107.9 \mathrm{~g} \mathrm{Ag}}=0.8275 \mathrm{~mol} \mathrm{C}$

$$
\begin{aligned}
& 0.852 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.1 \mathrm{~g} \mathrm{~S}}=1.6507 \mathrm{~mol} \mathrm{Cl} \\
& 1.695 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=0.1059 \mathrm{~mol} \mathrm{O} \\
&
\end{aligned}
$$

Determining the Molecular Formula

- Recall that the molecular formula is the actual number of each type of atom in a molecule
molecular formula $=$ empirical formula $\times \frac{\text { compound's molar mass }}{\text { molar mass of empirical formula }}$

Determining Molecular Formula

- Step one: calculate the molar mass of the empirical formula
- Step two: divide molar mass of molecular formula (usually given in question) by the molar mass of the empirical formula
- Step three: multiply the empirical formula by this factor (empirical formula) factor
molecular formula $=$ empirical formula $\times \frac{\text { compound's molar mass }}{\text { molar mass of empirical formula }}$

The empirical formula of glucose is $\mathrm{CH}_{2} \mathrm{O}$ and its molar mass is 180.0 g . Determine the molecular formula.

- Step one- molar mass of $\mathrm{CH}_{2} \mathrm{O}$
- $\mathbf{1 2 . 0} \mathbf{g}+2(1.01) g+16.0 g=30.0 g$
- Step two- divide molar mass by empirical molar mass to get the factor
$-\frac{180.0 \mathrm{~g}}{30.0 \mathrm{~g}}=\mathbf{6}$
- We need 6 times as much of everything!!
$=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Workbook p. 147

Practice Problems 1-3

Answers
 p. 147

$$
\text { 1. } \begin{array}{lll}
1 \mathrm{C} & (1 \times 12.0 \mathrm{~g}) / \mathrm{mol} & =12.0 \mathrm{~g} / \mathrm{mol} \\
2 \mathrm{H} & (2 \times 1.0 \mathrm{~g}) / \mathrm{mol} & =2.0 \mathrm{~g} / \mathrm{mol} \\
1 \mathrm{O}(1 \times 16.0 \mathrm{~g}) / \mathrm{mol} & =\underline{16.0 \mathrm{~g} / \mathrm{mol}} & \\
& & \\
20.0 \mathrm{~g} / \mathrm{mol} & \frac{60.0 \mathrm{~g} / \mathrm{mol}}{30.0 \mathrm{~g} / \mathrm{mol}}=2
\end{array}
$$

1. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
2. 80 or $120 \mathrm{~g} / \mathrm{m}$
3. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$

$$
\text { 2. } \begin{aligned}
3 \mathrm{C} & (1 \times 12.0 \mathrm{~g}) / \mathrm{mol}
\end{aligned}=36.0 \mathrm{~g} / \mathrm{mol}, ~=\frac{4.0 \mathrm{~g} / \mathrm{mol}}{40.0 \mathrm{~g} / \mathrm{mol}}
$$

$80.0 \mathrm{~g} / \mathrm{mol}, 120.0 \mathrm{~g} / \mathrm{mol}$ because they are both multiples of $40 \mathrm{~g} / \mathrm{mo}$
3. $4.51 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=0.3758 \mathrm{~mol} \mathrm{C}$

$$
\begin{aligned}
& 1.13 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.0 \mathrm{~g} \mathrm{H}}=1.13 \mathrm{~mol} \mathrm{H} \\
& 6.01 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=0.3756 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

$1 \mathrm{C}(1 \times 12.0 \mathrm{~g}) / \mathrm{mol}=12.0 \mathrm{~g} / \mathrm{mol}$
$3 \mathrm{H}(3 \times 1.0 \mathrm{~g}) / \mathrm{mol}=3.0 \mathrm{~g} / \mathrm{mol}$
$1 \mathrm{O}(1 \times 16.0 \mathrm{~g}) / \mathrm{mol}=\frac{16.0 \mathrm{~g} / \mathrm{mol}}{31.0 \mathrm{~g} / \mathrm{mol}} \quad \frac{62.0 \mathrm{~g} / \mathrm{mol}}{31.0 \mathrm{~g} / \mathrm{mol}}=2$
$2\left(\mathrm{CH}_{3} \mathrm{O}\right)=\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$

Homework

- Workbook
" 3.5 all practice problems
- 3.5 Review Questions p. 149
" 1-7, 9, 11
- Optional practice problems on moodle site
- Check white board for additional homework

Chapter 3.6
Molar Concentration

Concentration

- The proportion of a chemical in a solution or the amount of solute per volume of a solution
- g/mL , mg/L , or parts per million

High concentration

Low concentration

Molarity M

- It is a measure of the amount of moles of solute in solution per litre of solvent
- Allows us to compare number of particles in the same volume of different solutions
- Units are mol/L which is called M
- Also called molar concentration
- Square brackets [] are used to indicate it

Examples

$1 \mathrm{M} \mathrm{HNO}_{3}$ means 1 mol of HNO_{3} per liter of solution

- 6.02×10^{23} molecules per liter
II. $2 \mathrm{M} \mathrm{HNO}_{3}$ means $2 \mathbf{~ m}$
= $2\left(6.02 \times 10^{23}\right)$ molecules
III. So one liter of $2 \mathrm{M} \mathrm{HNO}_{3}$ has twice as many molecules as one liter of $1 \mathrm{~m} \mathrm{HNO}_{3}$

To convert

- Multiply or divide by

Name	Equivalence Statement	Conversion Factors	
Molar concentration	1 L solution $=?$ mol solute	$\frac{? \text { mol solute }}{1 \text { L solution }}$	$\frac{1 \mathrm{~L} \text { solution }}{? \text { mol solute }}$
Example: 3 M HCN	1 L solution $=3 \mathrm{~mol} \mathrm{HCN}$	$\frac{3 \mathrm{~mol} \mathrm{HCN}}{1 \mathrm{~L} \text { solution }}$	$\frac{1 \mathrm{~L} \text { solution }}{3 \text { mol HCN }}$

1.23 L of $3.00 \mathrm{M} \mathrm{KCl}=\ldots \quad \mathrm{mol} \mathrm{KCl}$

- 1.23 L
3.00 mol
$1.23 \mathrm{~L} \times \frac{3 \mathrm{~L}}{1 \mathrm{~L}}=$
$1.23 \mathrm{~L} \times \frac{3.00 \mathrm{~mol}}{1 \mathrm{~L}}=3.69 \mathrm{~mol} \mathrm{KCl}$

Workbook p. 153

Try practice problems 1-4

Answers p. 153

1. $\quad 0.72 \mathrm{~L}$ soln $\times \underline{2.5 \mathrm{~mol} \mathrm{NaOH}}=1.8 \mathrm{~mol} \mathrm{NaOH}$ 1 L soln
2. 0.500 L soln $\times \underline{0.154 \mathrm{~mol} \mathrm{NaCl}}=0.0770 \mathrm{~mol} \mathrm{NaCl}$ 1 L soln
3. $3.0 \mathrm{~mol} \mathrm{HCl} \times \frac{1}{0.60 \mathrm{~mol} \mathrm{sCl}}=5.0 \mathrm{~L}$ soln
4. $1.0 \times 10^{-3} \mathrm{~mol}$ methanethiol $\times \frac{1 \quad \mathrm{~L} \text { urine }}{4.0 \times 10^{-8} \mathrm{~mol} \text { methanethiol }}=25000 \mathrm{~L}$ urin

Preparing solutions

- A standard solution is a term for a solution with a known concentration
- To prepare it you mix a mass of solute and a volume of water
- Prepare $\mathbf{1} \mathbf{M ~ C a C l}_{2}$ (aq)
- Measure out 1 mol of CaCl 2 which is 110.94 g and add water until the solution totals one liter

Try it! Describe how to prepare 0.055 L of 0.20 M KCL from the solid.

$=0.055 \mathrm{~L}$

- $0.055 \mathrm{~L} \times \frac{0.20 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L}}$
$=0.055 \mathrm{~L} \times \frac{0.20 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L}} \times \frac{74.6 \mathrm{~g} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{KCl}}$
$=0.055 \mathrm{~L} \times \frac{0.20 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L}} \times \frac{74.6 \mathrm{~g} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{KCl}}=0.82 \mathrm{~g} \mathrm{KCl}$
- You would measure out 0.82 g KCl and add water up to 55 ml (0.055 L) of solution.

What molar concentration (M) of KCl is produced by measuring out 1.0 g KCL and adding water up to 0.350 L of solution?

- First we need to convert grams to moles
- $1.0 \mathrm{~g} \mathrm{KCl} \times \frac{1 \mathrm{~mol} \mathrm{KCl}}{74.6 \mathrm{~g} \mathrm{KCl}}=0.013 \mathrm{~mol} \mathrm{KCl}$
- Now find molar concentration (mol/L)
$-\frac{0.013 \mathrm{~mol} \mathrm{KCl}}{0.350 \mathrm{~L} \text { of solution }}=0.038 \mathrm{M} \mathrm{KCl}$

Workbook p. 154

Practice problems 1-3

Answers p. 154

Measure out $83 \mathrm{~g} \mathrm{CaCl}_{2}$ and add water up to 0.500 L soln.
2. 0.055 L soln $\times \frac{0.20 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L} \text { soln }} \times \frac{74.6 \mathrm{~g} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{KCl}}=0.82 \mathrm{~g} \mathrm{KCl}$
3. $1.8 \mathrm{~g} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{AgNO}_{3}}{169.0 \mathrm{~g} \mathrm{AgNO}_{3}}=0.01059 \mathrm{~mol} \mathrm{AgNO} 3$
$0.01059 \mathrm{~mol} \mathrm{AgNO}_{3}=0.14 \mathrm{M} \mathrm{AgNO}_{3}$
0.075 L soln

Multi- step Conversions

- We know how to use molarity (M) to convert from a volume of solution to moles now we will determine the number of atoms or vice versa
- $1 \mathrm{~mol}=6.02 \times 10^{23}$ atoms or molecules

How many chlorine ions are in 0.025 L of $0.30 \mathrm{M} \mathrm{AlCl}_{3}$?

$=0.025$ L
$0.025 \mathrm{~L} \times \frac{0.30 \mathrm{~mol}}{1 \mathrm{~L}}$

- $0.025 \mathrm{~L} \times \frac{0.30 \mathrm{molAlCl}_{3}}{1 \mathrm{~L}} \times \frac{\mathbf{3 ~ m o l ~ C l}-}{1 \mathbf{~ m o l ~ A l C l}_{3}}$
$=0.025 \mathrm{~L} \times \frac{0.30 \mathrm{molAlCl}_{3}}{1 \mathrm{~L}} \times \frac{3 \mathrm{~mol} \mathrm{Cl}_{-}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}} \times \frac{6.02 \times 1023 \text { ions } \mathrm{Cl}-}{1 \mathrm{~mol} \mathrm{Cl}-}$
$=1.4 \times 10^{22}$ ions Cl-

Workbook p. 157

practice problems 1-5

Answers p. 157

1. $\mathrm{CaCl}_{2}(s) \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \quad 1.5 \mathrm{M} \mathrm{Ca}^{2+}$ and $3.0 \mathrm{M} \mathrm{Cl}^{-}$
2. $\mathrm{Na}_{3} \mathrm{PO}_{4}(s) \longrightarrow 3 \mathrm{Na}^{+}(a q)+\mathrm{PO}_{4}{ }^{3-}(a q) \quad 0.20 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$
3. $\mathrm{Li}_{3} \mathrm{PO}_{4}(s) \longrightarrow 3 \mathrm{Li}^{+}(a q)+\mathrm{PO}_{4}{ }^{3-}(a q)\left[\mathrm{Li}^{+}\right]=3\left[\mathrm{PO}_{4}{ }^{3-}\right]$
4. $\quad 0.75 \mathrm{~L}$ soln $\times \frac{2.8 \mathrm{~mol} \mathrm{~K}^{+}}{1 \mathrm{~L} \text { soln }} \times \frac{39.1 \mathrm{~g} \mathrm{~K}}{}+\mathrm{K}^{+}=82 \mathrm{~g} \mathrm{~K} \mathrm{~K}^{+}$
5. 0.525 L soln $\times \frac{3.0 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}}{1 \mathrm{~L} \text { soln }} \times \frac{3 \mathrm{~mol} \mathrm{NO}}{1 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}}{ }^{-}-\frac{6.02 \times 10^{23} \text { ions } \mathrm{NO}_{3}}{1 \mathrm{~mol} \mathrm{NO}_{3}{ }^{-}}=$ $=2.8 \times 10^{24}$ ions $\mathrm{NO}_{3}{ }^{-}$

Homework

Review Questions

- 1-9, 12,13,17

