Chapter 3.5

Determining Formulas – Composition Analysis

Look at your periodic table

- Do any elements share the same molar mass (atomic mass)?
- No so you can identify an element from its molar mass
- You can also identify a compound from its mass
- This is what a mass spectrometer does (as seen on CSI)

Percentage Composition

- Percent of a compound's mass contributed by each type of atom in the compound.
- You can find it from its formula

Percentage Composition of H2O

- Calculate the molar mass:
 - 2H + 0 = 2(1.01) + 16.0 = 18.02 g/mol
 - Thus there is 2.01 g H and 16.0 g O
- Find the percentage of each part

•
$$\%H = \frac{2.029}{18.02 g} \times 100 = 11.2\%$$

• % O =
$$\frac{16.0 g}{18.02 g}$$
 x100 = **88.8%**

Workbook p. 143

- Please complete the practice problems 1-3
 - Look at the sample problem for help

Answers p. 143

```
1. 13 C (13 \times 12.0 \text{ g})/\text{mol} = 156.0 \text{ g/mol}
                                                                             = 75.7\%
        18 \text{ H } (18 \times 1.0 \text{ g})/\text{mol} = 18.0 \text{ g/mol}
                                                                             = 8.7\%
                                                                             = 15.5\%
          2 \text{ O} (2 \times 16.0 \text{ g})/\text{mol} = 32.0 \text{ g/mol}
                                                 206.0 g/mol
                                                                                 99.9%
2. 2 \text{ N} (2 \times 14.0 \text{ g})/\text{mol} = 28.0 \text{ g/mol}
                                                                             = 21.2%
        8 \text{ H} \quad (8 \times 1.0 \text{ g})/\text{mol} = 18.0 \text{ g/mol}
                                                                             = 6.1\%
        1 \text{ S} \quad (1 \times 32.0 \text{ g})/\text{mol} = 32.1 \text{ g/mol} = 24.3\%
        4 \text{ O} \quad (4 \times 16.0 \text{ g})/\text{mol} = \underline{64.0 \text{ g}/\text{mol}} = \underline{48.4\%}
                                                                             100.0%
                                                  132.1 g/mol
3. 1 \text{ Mg} (1 \times 24.3 \text{ g})/\text{mol} = 24.3 \text{ g/mol}
        1 \text{ S} \quad (1 \times 32.0 \text{ g})/\text{mol} = 32.1 \text{ g/mol}
        4 O (4 \times 16.0 \text{ g})/\text{mol} = 64.0 \text{ g}/\text{mol}
                                                   120.4 g/mol
        7 \text{ H}_2\text{O} (7 \times 18.0 \text{ g})/\text{mol} = 126.0 \text{ g/mol}
                                                                             = 51.1%
                                                   246.4 g/mol
```

Types of Formulas: Example Butane

- Every compound has three formulas
 - Molecular formula- how the compound actually exists
 - Butane is C₄H₁₀
 - Empirical formula the simplest ratio
 - Butane simplifies to C₂H₅
 - Structural formula a diagram showing the arrangement of molecules

Finding Empirical Formulas from %

- Step 1- change % to grams
 - Assume there are a 100g of the substance so the conversion is easy
- Step 2 Convert grams to moles
 - Use molar masses from the periodic table
- Step 3- Find the ratio of the elements
 - Divide by the smallest value
- Step 4- Make sure the ratios are whole numbers
 - Write formula- C_{1.5}O₂ would become C₃O₄

Determine the empirical formula for a compound composed of 80.0% C and 20.0% H.

- Step one: Change to grams
 - 80.0% C and 20.0% H becomes 80.0g C and 20.0 g H
- Step 2: Convert to moles
 - 80.0 g H x $\frac{1 mol}{12.0 g H}$ = **6.67 mol C**
 - 20.0 g H x $\frac{1 mol}{1.0 g H}$ = **20.0 mol H**

Determine the empirical formula for a compound composed of 80.0% C and 20.0% H. Continued...

- Step 3: Find the ratio of elements
 - ÷ by smallest which is Carbon with **6.67** moles

$$\frac{6.67}{6.67} = 1 \text{ C}$$

$$-\frac{20.0}{6.67}$$
 = **3 H**

- Step 4: Make sure the ratios are whole numbers
 - 1C: 3H yup whole numbers
 - CH₃

Workbook p. 145

Complete Practice Problems 1-3

Answers p. 145

- 1. Li2CO3
- 2. CCl₂F₂
- 3. Ag2SO4

1.
$$18.7 \text{ g Li} \times \frac{1 \text{ mol Li}}{6.9 \text{ g Li}} = 2.7101 \text{ mol Li}$$

$$16.3 \text{ g C} \times \frac{1 \mod C}{12.0 \text{ g C}} = 1.3583 \mod C$$

$$65.5 \text{ g O} \times \underline{1 \mod O} = 4.0938 \mod O$$

 16.0 g O

Li₂CO₃

2.
$$9.93 \text{ g C} \times \frac{1 \mod C}{12.0 \text{ g C}} = 0.8275 \mod C$$

$$58.6 \text{ g Cl} \times \underline{1 \mod \text{Cl}} = 1.6507 \mod \text{Cl}$$

35.5 g Cl

$$31.4 \text{ g F} \times \frac{1 \text{ mol F}}{19.0 \text{ g F}} = 1.6526 \text{ mol F}$$

 CCl_2F_2

3.
$$5.723 \text{ g Ag} \times \underline{1 \mod \text{Ag}} = 0.8275 \text{ mol C}$$

 107.9 g Ag

$$0.852 \text{ g S} \times \frac{1 \text{ mol S}}{32.1 \text{ g S}} = 1.6507 \text{ mol Cl}$$

$$1.695 \text{ g O} \times \underline{1 \mod O}$$
 = 0.1059 mol O
16.0 g O

 Ag_2SO_4

Determining the Molecular Formula

 Recall that the molecular formula is the actual number of each type of atom in a molecule

 $molecular formula = empirical formula \times \frac{compound's molar mass}{molar mass of empirical formula}$

Determining Molecular Formula

- Step one: calculate the molar mass of the empirical formula
- Step two: divide molar mass of molecular formula (usually given in question) by the molar mass of the empirical formula
- Step three: multiply the empirical formula by this factor (empirical formula)_{factor}

 $molecular formula = empirical formula \times \frac{compound's molar mass}{molar mass of empirical formula}$

The empirical formula of glucose is CH2O and its molar mass is 180.0g. Determine the molecular formula.

- Step one- molar mass of CH2O
 - **12.0** g + 2(1.01)g + 16.0g = 30.0g
- Step two- divide molar mass by empirical molar mass to get the factor

$$\frac{180.0g}{30.0g} = 6$$

- We need 6 times as much of everything!!
- -(CH₂O)₆ = C₆H₁₂O₆

Workbook p. 147

Practice Problems 1-3

Answers p. 147

1C

80.0 g/mol, 120.0 g/mol because they are both multiples of 40 g/mo

 $2 (CH_3O) = C_2H_6O_2$

1.0 g H 16.0 g O

 $1 \text{ C} \quad (1 \times 12.0 \text{ g})/\text{mol} = 12.0 \text{ g/mol}$

 $3 \text{ H} (3 \times 1.0 \text{ g})/\text{mol} = 3.0 \text{ g/mol}$ 1 O $(1 \times 16.0 \text{ g})/\text{mol} = 16.0 \text{ g/mol}$

31.0 g/mol

62.0 g/mol = 231.0 g/mol

CH₃O

60.0 g/mol = 2

30.0 g/mol

3. $4.51 \text{ g C} \times 1 \text{ mol C} = 0.3758 \text{ mol C}$ 12.0 g C $1.13 \text{ g H} \times 1 \text{ mol H} = 1.13 \text{ mol H}$ $6.01 \text{ g O} \times 1 \mod O = 0.3756 \mod O$

 $(1 \times 12.0 \text{ g})/\text{mol} = 12.0 \text{ g/mol}$

= 16.0 g/mol

30.0 g/mol

40.0 g/mol

 $2H (2 \times 1.0 \text{ g})/\text{mol} = 2.0 \text{ g/mol}$

2. 3 C $(1 \times 12.0 \text{ g})/\text{mol} = 36.0 \text{ g/mol}$

 $4 \text{ H} \quad (4 \times 1.0 \text{ g})/\text{mol} = 4.0 \text{ g/mol}$

10 $(1 \times 16.0 \text{ g})/\text{mol}$

 $2 (CH_2O) = C_2H_4O_2$

Homework

- Workbook
 - 3.5 all practice problems
 - 3.5 Review Questions p.149
 - **1**-7, 9, 11
- Optional practice problems on moodle site
- Check white board for additional homework

Chapter 3.6

Molar Concentration

Concentration

- The proportion of a chemical in a solution or the amount of solute per volume of a solution
- g/mL, mg/L, or parts per million

Molarity M

- It is a measure of the amount of moles of solute in solution per litre of solvent
- Allows us to compare number of particles in the same volume of different solutions
- Units are mol/L which is called M
- Also called molar concentration
- Square brackets [] are used to indicate it

Examples

- 1 M HNO3 means 1 mol of HNO3 per liter of solution
 - 6.02x10²³ molecules per liter
- II. 2M HNO3 means 2 mol of HNO3 per liter
 - 2(6.02x10²³) molecules
- So one liter of 2M HNO3 has twice as many molecules as one liter of 1m HNO3

To convert

Multiply or divide by

Name	Equivalence Statement	Conversion Factors	
Molar concentration	1 L solution = ? mol solute	? mol solute 1 L solution	1 L solution ? mol solute
Example: 3 M HCN	1 L solution = 3 mol HCN	3 mol HCN 1 L solution	1 L solution 3 mol HCN

1.23 L of 3.00 M KCl = ____ mol KCl

$$-1.23L \times \frac{3.00 \, mol}{1 \, I} =$$

- 1.23L x
$$\frac{3.00 \, mol}{1 \, L}$$
 = 3.69 mol KCl

Workbook p.153

Try practice problems 1-4

Answers p.153

- 1. 0.72 L soln × 2.5 mol NaOH = 1.8 mol NaOH 1 L soln
- 2. $0.500 \text{ L soln} \times \underline{0.154 \text{ mol NaCl}} = 0.0770 \text{ mol NaCl}$ 1 L soln
- 3. $3.0 \text{ mol HCl} \times \underline{1} \quad \underline{L} \quad \text{soln} = 5.0 \text{ L soln}$ $0.60 \quad \text{mol HCl}$
- 4. 1.0×10^{-3} mol methanethiol × 1 L urine = 25000 L urine 4.0×10^{-8} mol methanethiol

Preparing solutions

- A standard solution is a term for a solution with a known concentration
- To prepare it you mix a mass of solute and a volume of water

- Prepare 1M CaCl₂(aq)
 - Measure out 1 mol of CaCl2 which is 110.94 g and add water until the solution totals one liter

Try it! Describe how to prepare o.o55L of o.20 M KCL from the solid.

- 0.055L
- $-0.055L \times \frac{0.20 \, mol \, KCl}{1 \, L}$
- $0.055L \times \frac{0.20 \, mol \, KCl}{1 \, L} \times \frac{74.6g \, KCl}{1 \, mol \, KCl}$
- 0.055L x $\frac{0.20 \ mol \ KCl}{1 \ L}$ x $\frac{74.6g \ KCl}{1 \ mol \ KCl}$ = 0.82 g KCl
- You would measure out o.82g KCl and add water up to 55 ml (o.055L) of solution.

What molar concentration (M) of KCl is produced by measuring out 1.0 g KCL and adding water up to 0.350L of solution?

First we need to convert grams to moles

- 1.0 g KCl
$$\times \frac{1 \, mol \, KCl}{74.6 \, g \, KCl}$$
 = 0.013 mol KCl

Now find molar concentration (mol/L)

$$\frac{0.013 \, mol \, KCl}{0.350 \, L \, of \, solution} = 0.038 \, \text{M KCl}$$

Workbook p. 154

Practice problems 1-3

Answers p. 154

1.
$$0.500 \text{ L soln} \times 1.5 \text{ mol } \text{CaCl}_2 \times 111.1 \text{ g } \text{CaCl}_2 = 83 \text{ g } \text{CaCl}_2$$

1 L soln 1 mol CaCl₂

Measure out 83 g CaCl₂ and add water up to 0.500 L soln.

3.
$$1.8 \text{ g AgNO}_3 \times 1 \text{ mol AgNO}_3 = 0.01059 \text{ mol AgNO}_3$$

 169.0 g AgNO_3

$$\frac{0.01059 \text{ mol AgNO}_3}{0.075 \text{ L} \text{ soln}} = 0.14 \text{ M AgNO}_3$$

Multi- step Conversions

- We know how to use molarity (M) to convert from a volume of solution to moles now we will determine the number of atoms or vice versa
- \blacksquare 1 mol = **6.02**x **10**²³ atoms or molecules

How many chlorine ions are in 0.025L of 0.30 M AlCl3?

- 0.025 L
- $-0.025 L \times \frac{0.30 mol}{1 L}$
- $0.025 L \times \frac{0.30 \, molAlCl_3}{1 \, L} \times \frac{3 \, mol \, Cl 1}{1 \, mol \, AlCl_3}$
- $0.025 L \times \frac{0.30 \, molAlCl_3}{1 \, L} \times \frac{3 \, mol \, Cl -}{1 \, mol \, AlCl_3} \times \frac{6.02 x 1023 \, ions \, Cl -}{1 \, mol \, Cl -}$
- = 1.4X10²² ions Cl-

Workbook p. 157

practice problems 1-5

Answers p. 157

1.
$$CaCl_2(s) \rightarrow Ca^{2+}(aq) + 2Cl^{-}(aq)$$
 1.5 M Ca^{2+} and 3.0 M Cl^{-}

2.
$$\text{Na}_3\text{PO}_4(s) \to 3\text{Na}^+(aq) + \text{PO}_4^{3-}(aq)$$
 0.20 M Na₃PO₄

3.
$$\text{Li}_3\text{PO}_4(s) \longrightarrow 3\text{Li}^+(aq) + \text{PO}_4^{3-}(aq) [\text{Li}^+] = 3[\text{PO}_4^{3-}]$$

4.
$$0.75 \text{ L soln} \times \underline{2.8 \text{ mol } \text{K}^{+}} \times \underline{39.1 \text{ g } \text{K}^{+}} = 82 \text{ g K}^{+}$$

 $1 \text{ L soln} \quad 1 \text{ mol K}^{+}$

5.
$$0.525 \text{ L soln} \times 3.0 \text{ mol Fe(NO}_3)_3 \times 3 \text{ mol NO}_3^- \times 6.02 \times 10^{23} \text{ ions NO}_3^-$$

 $1 \text{ L soln} \quad 1 \text{ mol Fe(NO}_3)_3 \quad 1 \quad \text{mol NO}_3^-$
 $= 2.8 \times 10^{24} \text{ ions NO}_3^-$

Homework

- Review Questions
 - **1-9**, 12,13,17