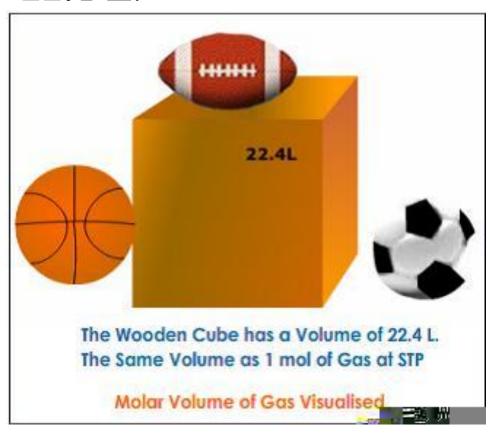

22.4 L The volume of 1.00 mole of any gas

MOLAR VOLUME


Chapter 3.2

VOLUME REVIEW

- Volume is the space taken up by particles, atoms or molecules of a substance
- •SI unit is Liters (L)
 - Might see cm³ or mL

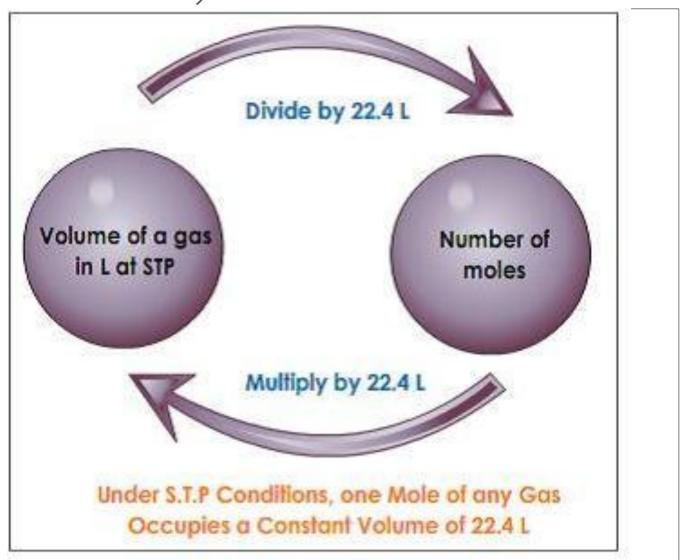
Molar Volume

- The space taken up by one mole of particles.
- One mole of any gas at STP will have a volume of 22.4 L.

WHAT IS STP?

- Standard Temperature and Pressure
- o 0 degrees Celsius (273 Kelvin) at 1 atmosphere (sea level)
- STP sets a constant standard

Mole Concept and Volume


- A mole of a gas is the amount of a substance containing 6.02×10^{23} particles.
- Avogadro discovered that under standard conditions of temperature and pressure, called STP, (1 atm and 273 K) a sample of gas occupies a volume of 22.4 L.

Molar Volume

- The molar volume [22.4 L at STP] plays a vital role in stoichiometric calculations because it is the link between volume and mass in reactions involving gases.
- Conversion factors are

Equivalence Statement	Conversion Factors	
1 mol = 22.4 L @ STP	22.4 L 1 mol @ STP	1 mol @ STP

VOLUME, MOLE CONVERSIONS

WHAT IS THE VOLUME OF 1.94 MOLES OF CO₂ GAS AT STP?

- Mol CO₂ to volume CO₂
- 1.94 mol CO₂ x

• 1.94 mol CO₂ x
$$\frac{22.4L CO_2}{1 mol CO_2}$$
 = 43.5 L of CO₂

WORKBOOK P. 133-134

- Complete
 - Quick check on p. 132
 - Practice problems 1-3 on p. 134
 - This should take you about 3-5 minutes
 - When finished read about multi-step conversions on page 134

ANSWERS P. 134

- 1. $1.33 \text{ mol } O_2 \times \underline{22.4 \text{ L} O_2} = 29.8 \text{ L} O_2$ $1 \text{ mol } O_2$
- 2. $9.5 \text{ L SO}_2 \times 1 \text{ mol SO}_2 = 0.42 \text{ mol SO}_2$ 22.4 L SO₂
- 3. $0.39 \text{ mol SiO}_2 \times 22.8 \text{ cm}^3 \text{SiO}_2 = 8.9 \text{ cm}^3 \text{SiO}_2$ 1 mol SiO_2

Multi-Step Conversions

- You can't convert directly between volume and number of atoms, or mass and volume.
- Once again we will convert through the mole!
- Plan your route and then choose the proper conversions!
- Follow along on page 135

VOLUME AND ITEMS CONVERSION USE

- \circ 22.4L = 1 mole
- $\circ 6.02 \times 10^{23} \text{ items} = 1 \text{ mol}$

Volume to Number of Items (atoms) p.135

- The gas in neon signs is at extremely low pressure. How many neon atoms are present in a sign containing 75mL of neon gas at a molar volume that is 100 times greater than the molar volume at STP?
- We have: 75mL of Ne gas VOLUME
- We want: number of Ne atoms
- The wrinkle the molar volume is 100 times the molar volume. So 22.4L x100= 2400 L

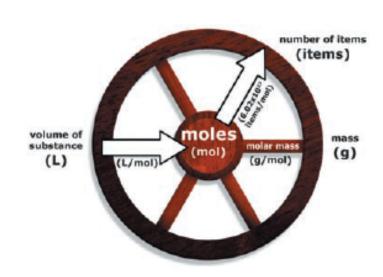
The gas in neon signs is at extremely low pressure. How many neon atoms are present in a sign containing 75 mL of neon gas at a molar volume that is 100 times greater than the molar volume at STP?

What to Think about

Convert: mL → L

2. Convert: L Ne → mol Ne → atoms Ne

Setup:


$$0.075 \text{ L Ne} \times \frac{1 \text{ mol Ne}}{? \text{ L Ne}} \times \frac{? \text{ atoms Ne}}{1 \text{ mol Ne}}$$

Conversion factors:
 2240 L Ne per 1 mol Ne
 6.02 × 10²³ atoms Ne per 1 mol Ne

How to Do It

$$75 \text{ ml} \times \frac{1.0 \text{ L}}{1000 \text{ mL}} = 0.075 \text{ L}$$

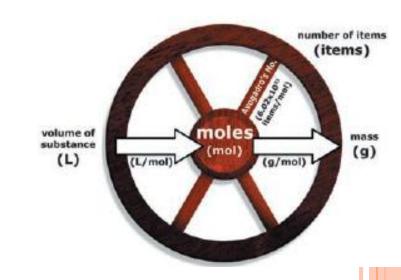
 $= 2.0 \times 10^{19}$ atoms Ne

VOLUME AND MASS CONVERSIONS

- \circ 22.4L = 1 mole
- •Molar mass = 1 mole (from periodic table)

What is the mass of 8.0L of CH_4 at STP?

What to Think about


- Convert: L CH₄ → mol CH₄ → g CH₄
- 2. Setup:

$$8.0 \text{ L CH}_4 \times \frac{1 \text{ mol CH}_4}{? \text{ L CH}_4} \times \frac{? \text{ g CH}_4}{1 \text{ mol CH}_4}$$

Conversion factors:
 22.4 L CH₄ per 1 mol CH₄
 16.0 g CH₄ per 1 mol CH₄

How to Do It

8.0 L CH₄ ×
$$\frac{1 \text{ mol CH}_{4}}{22.4 \text{ L CH}_{4}}$$
 × $\frac{16.0 \text{ g CH}_{4}}{1 \text{ mol CH}_{4}}$ = 5.7 g CH₄

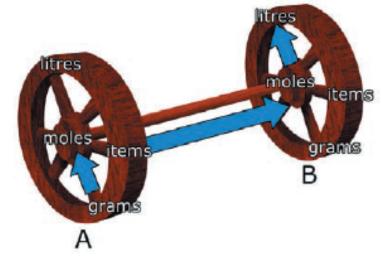
Mass of A to Volume of B

- Moles in compounds e.g. CO₂
 - One mole of $CO_2 = 1$ mole of C
 - One mole of $CO_2 = 2$ moles of O
- \circ 22.4L = 1 mole

What Volume of CO_2 at STP contains 0.2G of carbon?

What to Think about

- Convert: g C → mol C → mol CO₂ → L CO₂
- 2. Setup:


$$0.20 \text{ g C} \times \frac{1 \text{ mol C}}{? \text{ g C}} \times \frac{1 \text{ mol CO}_2}{? \text{ mol C}} \times \frac{? \text{ L CO}_2}{1 \text{ mol CO}_2}$$

Conversion factors:
 1 mol C per 12.0 g C
 1 mol CO₂ per 1 mol C
 22.4 L CO₂ per 1 mol CO₂

How to Do It

$$0.20 g \in \times \frac{1 \text{ mol CO}_{2}}{12.0 g C} \times \frac{1 \text{ mol CO}_{2}}{1 \text{ mol CO}_{2}} \times \frac{22.4 \text{ L CO}_{2}}{1 \text{ mol CO}_{2}}$$

$$= 0.37 \text{ L CO}_{2}$$

Converting mass of one substance to volume of another

WORKBOOK

- o p. 136 #1-3
 - Try the problems
 - Should take 3-5 minutes
 - If finished early rad about volume and density conversions

ANSWERS

- 1. $17 \text{ g H}_2\text{S} \times 1 \text{ mol H}_2\text{S} \times 22.4 \text{ L H}_2\text{S} = 11 \text{ L H}_2\text{S}$ $34.1 \text{ g} \text{ H}_2\text{S}$ 1 mol H₂S
- 2. 22.4 L C₃H₈, 3 mol C, 12.0 g C answer 1.6 g C
- $0.200 \text{ L C}_2\text{H}_6\text{O}_2 \times \underline{1 \mod \text{C}_2\text{H}_6\text{O}_2} \times \underline{6 \mod \text{H}} \times \underline{6.02 \times 10^{23} \text{ atoms H}}$ $0.0559 \text{ L } C_2H_6O_2 \quad 1 \text{ mol } C_2H_6O_2 \quad 1$
 - $= 1.29 \times 10^{25}$ atoms H

VOLUME AND DENSITY CONVERSIONS

- Density is the amount of matter in a certain volume
 - Units are usually $\frac{g}{mL}$ or $\frac{g}{L}$
 - Also called mass per volume
- Density IS a conversion factor between mass and volume
 - So when converting from mass to volume you don't need to go through the mole; just multiply or divide by the density!

What is the mass of 2.00L of peroxide (H_2O_2) if it has a density of 1.45g/mL

- Convert to L
 - $1.45g/mL \times 1000mL/L = 1450g/L$
- We have volume and want mass
 - use $\frac{1450g}{1L}$
- \circ 2.00 L of H₂O₂ x $\frac{1450g}{1L}$ = 2900g

 \circ Or 2.90 x10³ g (sig figs!)

WORKBOOK P. 138

- Problems 1-3
- oIf finished start the review: 3.4 Review Questions
 - 1-6, 8, 9,11-17

ANSWERS

- 1. $1.33 \text{ g Au} \times \underline{1 \text{ cm}^3 \text{ Au}} = 639 \text{ cm}^3 \text{ Au}$ 19.42 g Au
- 2. $12.7 \text{ mL Hg} \times \underline{13.534 \text{ g Hg}} = 172 \text{ g Hg}$ 1 mL Hg
- 3. $\underline{46.0 \text{ g} \text{ C}_2\text{H}_5\text{OH}} \times \underline{1 \text{ mL C}_2\text{H}_5\text{OH}} = 58.3 \text{ mL/mol C}_2\text{H}_5\text{OH}$ $1 \text{ mol C}_2\text{H}_5\text{OH} = 0.789 \text{ g} \text{ C}_2\text{H}_5\text{OH}$

WORKBOOK /HOMEWORK

- o3.4 Review Questions
 - 1-6, 8, 11-17
- oCHEM 11 MOLES handout

- Ouiz on Monday (for marks)
 - 3.1-3.4
 - Focus will be on conversions with the mole: 3.2 and 3.3