More Mole Conversions!

Moles and Stoichiometry

- The word stoichiometry comes from the Greek words: stoicheion (meaning "element") and metron (meaning "measure").
- Stoichiometry deals with calculations about the masses or volumes of reactants and products involved in a chemical reaction.
- It is a very mathematical part of chemistry, so be prepared for lots of calculator use.

Recall

- A mole is a convienient unit (like a dozen)
- $1 \mathrm{~mol}=6.02 \times 10^{23}$ of something
- 602000000000000000000000
- And that's a lot ... but because particles in chemistry are so small it is a great unit to use for atoms and molecules!

Molar Mass Review

- The mass of one mole is called "molar mass"
- E.g. $1 \mathrm{~mol} \mathrm{Li}=6.94 \mathrm{~g} \mathrm{Li}$
- This is expressed as $6.94 \mathrm{~g} / \mathrm{mol}$
- What are the following molar masses?
S $32.06 \mathrm{~g} / \mathrm{mol} \quad \mathrm{SO}_{2} 64.06 \mathrm{~g} / \mathrm{mol}$

Why the mole?

- The mole allows us to convert from measurable amounts of a chemical to invisible atoms and molecules.
- A sample of Aluminum has a mass of 143 g . How many molecules of Al are there?

Two Step Calculations

- PLEASE MAKE SURE YOU:
- Show your work
- Write your units in every step !!!!
- These are going to get more complicated and students who don't write units often get lost $\%$
$4.5 \mathrm{gH}_{2} 1 \mathrm{molH}_{2} 1 \mathrm{~mol} \mathrm{O}_{2} / 32.0 \mathrm{~g} \mathrm{O}_{2} 136.0 \mathrm{~g} \mathrm{O}_{2}$
- This is just an example

A sample of AI has a mass of 143 g . How many atoms of Al are there?

- Convert from grams to atoms using the mole
- Step 1- grams to moles
- Step 2- moles to atoms
- What is the molar mass of Al?
- $26.98 \mathrm{~g} / \mathrm{mol}$
$-143 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g}}=5.30 \mathrm{~mol} \mathrm{Al}$
Hint!!
Always set the equations up so the units
CANCEL
$-5.30 \mathrm{~mol} \mathrm{Al} \times \frac{6.02 \times 1223 \mathrm{atoms}}{1 \mathrm{~mol} \mathrm{Al}}=3.19 \times 1024$ atoms

Conversions with Compounds

- Compounds are make up of chemically bonded elements
$-\mathrm{NH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCL}, \mathrm{NaCl}$
- $1 \mathrm{~mol} \mathrm{CO}_{2}$ has 6.02×10^{23} molecules of CO_{2}
- HOWEVER $1 \mathrm{~mol} \mathrm{CO}_{2}$ is composed of:
- 1 mol C atoms
-2 mol O atoms

How many moles of water are required to get 12.50 g of hydrogen.

- g of $\mathrm{H} \rightarrow \mathrm{molH} \rightarrow \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$
- $12.50 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g}}$
- $12.50 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{1}}{1.01 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}^{2}}=$

Conversion Options

- The Wheel - handout and found in the text
- The railroad tracks - handout
- In groups (at your tables) you will have 5 minutes to try each method. Complete p. 126, 128
- Then p. 130-131 \# 1-6, 11-19

