
More Mole Conversions!

Moles and Stoichiometry

- The word stoichiometry comes from the Greek words: *stoicheion* (meaning "element") and *metron* (meaning "measure").
- Stoichiometry deals with calculations about the masses or volumes of reactants and products involved in a chemical reaction.
- It is a very mathematical part of chemistry, so be prepared for lots of calculator use.

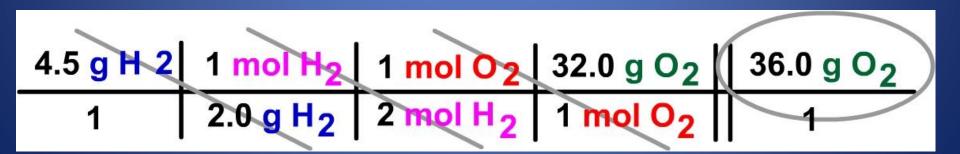
Recall

- A mole is a convienient unit (like a dozen)
- 1 mol = 6.02x10²³ of something
- 602 000 000 000 000 000 000 000

 And that's a lot ... but because particles in chemistry are so small it is a great unit to use for atoms and molecules!

Molar Mass Review

- The mass of one mole is called "molar mass"
- E.g. 1 mol Li = 6.94 g Li
- This is expressed as 6.94 g/mol
- What are the following molar masses?
 - S 32.06 g/mol SO₂ 64.06 g/mol


Why the mole?

 The mole allows us to convert from measurable amounts of a chemical to invisible atoms and molecules.

A sample of Aluminum has a mass of 143g.
 How many molecules of Al are there?

Two Step Calculations

- PLEASE MAKE SURE YOU:
 - Show your work
 - Write your units in every step !!!!
 - These are going to get more complicated and students who don't write units often get lost

– This is just an example

A sample of Al has a mass of 143g. How many atoms of Al are there?

- Convert from grams to atoms using the mole
 - Step 1- grams to moles
 - Step 2- moles to atoms
 - What is the molar mass of Al?
 - 26.98g/mol
 - $-143g \times \frac{1 \, mol \, Al}{26.98 \, g} = 5.30 \, mol \, Al$

Hint!!
Always set the equations up so the units

CANCEL

$$-5.30 \text{ mol Al x} \frac{6.02 \text{ x } 1223 \text{ atoms}}{1 \text{ mol Al}} = 3.19 \text{ x } 10 \text{ 24 atoms}$$

Conversions with Compounds

- Compounds are make up of chemically bonded elements
 - NH₄, H₂O, HCL, NaCl
- 1 mol CO₂ has 6.02 x 10²³ molecules of CO₂
- HOWEVER 1 mol CO₂ is composed of:
 - 1 mol C atoms
 - 2 mol O atoms

How many moles of water are required to get 12.50g of hydrogen.

• g of H \rightarrow mol H \rightarrow mol H₂O

• 12.50g
$$\times \frac{1 \, mol \, H}{1.01 \, g}$$

• 12.50g
$$x \frac{1 \, mol \, H}{1.01g} x \frac{1 \, mol \, H_2 O}{2 \, mol \, H} =$$

• 12.50g
$$x \frac{1 \, mol \, H}{1.01 \, g} x \frac{1 \, mol \, H_2 O}{2 \, mol \, H} = 6.19 \, mol \, H_2 O$$

Conversion Options

- The Wheel handout and found in the text
- The railroad tracks handout

- In groups (at your tables) you will have 5 minutes to try each method. Complete p. 126, 128
- Then p. 130- 131 # 1-6, 11-19