Chapter 4.4

Expressing and Measuring Chemical Change

Energy in Chemical Reactions

- Different molecules have different amounts of potential energy
- Potential energy (PE)
 - Stored energy a result of intermolecular bonds (between atoms/ions)

We will learn 2 ways to express energy in a balanced equation

- As enthalpy, ΔH, to the right of the equation (not part of the equation)
- 2. Thermochemical equations Directly as part of the equation

1. Enthalpy or ΔH

- A measure of the energy produced or used
- Its symbol is ΔH and means <u>change</u> in energy
 - The difference between the PE of products and PE of reactants
- An extensive property (depends on the amount of material reacting)
- Measured in joules or kilojoules per mole (kJ/mol)

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(I)$$
 $\Delta H_{combustion} = -2221 \text{ kJ/mol}$

- Methane reacting with oxygen (combustion)
- The ΔH is -2221 kJ/mol
 - This means the **products** have 2221 kJ/mol LESS potential energy than the reactants
 - During the reaction 2221 kJ/mol of energy was released (to environment)
 - This reaction is EXOTHERMIC

$H_2O(s) \rightarrow H_2O(l)$ $\Delta H = 6.0 \text{kJ/mol}$

- The ΔH is 6.0kJ/mol
 - The products have 6.0kJ/mol <u>MORE</u> potential energy than the reactants
 - During the reaction 6.0kJ/mol of energy was USED/ NEEDED
- This reaction is ENDOTHERMIC

Workbook

. Compete the chart on p. 198 top of page

Answers

- Energy is often released during (exothermic)
 - Neutralization
 - Combustion
 - Synthesis

- Energy is often absorbed during (endothermic)
 - Decomposition

Generally

• Breaking bonds requires energy input while bond forming results in energy release.

If ΔH is POSITIVE (+ ΔH)

- Products have more energy
- Reactants have less energy
- Reaction is ENDOTHERMIC

- Example
- Ba(OH)₂·8H₂O (s) + 2 NH₄SCN (s) \rightarrow Ba(SCN)₂ (s) + 10 H₂O (l) + 2 NH₃ (g)
- Energy is needed to break bonds in reactant cmpds (adding energy for reaction to occur= products more energy)

Endothermic + ΔH

Potential Energy vs. Reaction Proceeding

Figure 4.4.1 Potential energy diagram for an endothermic reaction

If ΔH is NEGATIVE (- ΔH)

- Products have less energy (b/c some energy lost to environment)
- Reactants have more energy
- Reaction is EXOTHERMIC

• Example:

$$2 \text{ Li(s)} + 2 \text{ H}_2\text{O} -> 2 \text{ LiOH (aq)} + \text{H}_2(g)$$

- It is the hydrogen gas that is combusting

Exothermic -ΔH

Potential Energy vs. Reaction Proceeding

Figure 4.4.2 Potential energy diagram for an exothermic reaction

Workbook

Complete the table on page 201

Answers:

Reaction	Endothermic or Exothermic
Dissolving potassium hydroxide	exothermic
Combustion of propane	exothermic
Melting ice	endo-thermic
Replacement of Iron by aluminum	exothermic
Formation of calcium hydroxide	exothermic

2. The second way to express energy in an equation

- Thermochemical Equations
 - Written as part of the equation
 - kJ/mol

Endothermic

 Energy is absorbed by reactants to form products thus write the energy with the reactants! (energy used)

$$572 \text{ kJ/mol} + 2 H_2O(I) \rightarrow 2 H_2(I) + O_2(g)$$

- What would ΔH be??
- $\Delta H = 572$ kJ/mol

Exothermic

• Energy is **released** by reactants as products are formed thus write the energy on the products side (energy produced).

$$2 H_2(I) + O_2(g) \rightarrow 2 H_2O(I) + 572 kJ/mol$$

- What would the ΔH be?
- $\Delta H = -572 \text{ kJ/mol}$

Practice Problems p.203 #1-3

Review some of the previous pages BEFORE asking me for help

Answers

Practice Problems — Representing Exothermic and Endothermic Changes (p. 203)

Given the following ΔH values, write a balanced thermochemical equation and an equation using ΔH notation with the smallest possible whole number coefficients for each of the following chemical changes:

1.
$$\Delta H_{\text{combustion}}$$
 of $C_2H_6(g) = -1428.5$ kJ/mol $2C_2H_6(g) + 7O_{2(g)} \rightarrow 6H_2O_{(g)} + 4CO_{2(g)} + 2857 \frac{\text{Mol}}{\text{mol}}$

$$2C_2H_6(g) + 7O_{2(g)} \rightarrow 6H_2O_{(g)} + 4CO_{2(g)} \Delta H = -2857 \frac{\text{Mol}}{\text{mol}}$$

Homework

- Read Chapter 4.4
- Review Questions:
 - . 1-6 all □

• Quiz on 4.1, 4.2, 4.4: Monday, Mar5th