MATH 11: UNIT 1.1-Chp 1.1 (Mickelson): Factoring Quadratic Equations
A. Review of Math 10:

What is a quadratic equation?
-in Latin, 'quad' $=4$, but 'quadra' is from 'quadratus' or 'quadrare' = make square
ie:

So: 'quadratic' $=$ equation to the power of 2
-the word 'quadratic' was first used by John Wilkins (a clergyman and philosopher) for An Essay towards a Real Character and Philosophical Language (1668) in which, amongst other things, he proposed a universal language and a decimal system of measures which later developed to become the metric system.
B. Basic factoring:
i. Remove common factors

Ex: $5 x^{2}+10$

Ex: $12 x^{4}-8 x^{3}+4 x^{2}$

Ex: $x(x+1)+3(x+1)$
$E x: x^{3}+x^{2}+3 x+3$
ii) factoring $a x^{2}+b x+c, a=1$
.... use after GCF, then 'criss cross', ac-method, break up the middle term, etc.

Criss-cross	AC-method	Break up the middle term
$\mathrm{X}^{2}+7 \mathrm{x}+12$	$\mathrm{x}^{2}+7 \mathrm{x}+12$	

$E x: x^{2}-x-12$
$E x: x^{2}-x y-12 y^{2}$

Ex: $x^{2}-7 x+6$
iii) difference of squares: $x^{2}-y^{2}=(x-y)(x+y)$

Ex: $4 x^{2}-16$

Ex: $\left(x^{2}-8 x+16\right)-y^{2}$

Try and factor:

1) $3 x^{2}+15 x+12$
2) $x^{2}-7 x-18$
3) $-x^{3} y-x^{2} y^{2}+6 x y^{3}$
4) $4-(x+3)^{2}$

Do: Mickelson (2nd edition) pg 10 \#5-8 (left), \#11-14 (2 from each) -quiz next day

Math 11: Unit 1.2
Factoring Quadratic Polynomials $a x^{2}+b x+c$
A. How do we factor $a x^{2}+b x+c$?
-after checking for GCF, we have a choice of methods:
i) we could do 'criss-cross':
ex: $-8 x^{2}+10 x+12$
ii) we could do 'break-up the middle term':
ex: $-8 x^{2}+10 x+12$
iii) we could do 'ac-method'
ex: $-8 x^{2}+10 x+12$
...up to you what you prefer.

Try:
A. $4 x^{2}-20 x+25$
B. $3 x^{2}+11 x-42$
B. Special factors: perfect square trinomials
$r e: a^{2}+2 a b+b^{2}=(a+b)^{2}$

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

-for it to be a perfect square, all these conditions MUST be met:

1) last term MUST be positive and a perfect square
2) 1st term MUST be positive and a perfect square
3) $2 \times$ (square root of 1 st term \times square root of last term) $=$ middle term

Ex: $x^{2}+10 x+25$

$$
e x: 64 x^{2}-112 x+49
$$

```
WB pg 19 \#1-4: left
        \#6-7: left
-quiz next day on unit 1.1 and 1.2
```

Math 11: unit 1.3 (chp 3.1) solving quadratic equations by factoring
A. What is a quadratic equation?
-it is a quadratic function set equal to zero
-we are solving for ' x '.
-if we are graphing quadratic equations, we want to see where the line will cross the ' x '-axis (covered later)
B. What is the 'general form' of a quadratic equation?
$a x^{2}+b x+c=0 \quad$ where a, b, and c are real numbers, and $a \neq 0$
ex: $-2 x^{2}-6 x-4=0$
C. How to solve quadratic equations by factoring
ex: $x^{2}-9 x+20=0$
D. Solving rational equations... use lowest common denominator!

Ex:

Ex:

Ex:

WB pg 75 \#6-9: left
\#10, 14
-quiz next day: unit 1.1-1.3

MATH 11: UNIT 1.4 - (chp 3.2): square root property and completing the square
A. Why and when do we use it?
-not all quadratic equations can be easily solved by factoring.
ie: decimal/fraction answers
...therefore, need to do it algebraically
-not always the best way....just an option. Leave your answer in radical form.
B. How do we do the square root property?
-remember: $5 \times 5=25$ and $(-5)(-5)=25$
-so when do doing square root of a number, we need to consider both the positive and negative roots

$$
\text { ie: } 5 \times 5=25 \text { AND }(-5)(-5)=25 \text { also! }
$$

$E x: x^{2}-25=0$

$$
x^{2}+25=0
$$

$$
(x-2)^{2}-49=0
$$

C. How to do completing the square?
-remember, a perfect square trinomial is: $(a+b)^{2}$

Ex:

Ex:

Ex:
...so let's try: $x^{2}-16 x-9=0$

$$
E x: x^{2}-6 x-27=0
$$

Try: $x^{2}+6 x+4=0$

Try: $x^{2}-4 x-11=0$
C. What if $a \neq 1$?
-make $a=1$, then do as usual.

Ex: $2 x^{2}-5 x-1=0$
-pg 81 \#2-7: left
-handout: \#1-13: odd
\#27-43: odd

MATH 11: unit 1.5: QUADRATIC FORMULA
A. Why and when do we use it?
-short on time
-don't like 'completing the square'

- $A x^{2}+B x+C=0$ doesn't factor easily
-use it to find roots of ' x '
B. What is it

From: $a x^{2}+b x+c=0$ gives you:

And
C. How to do it?

Ex: $3 x^{2}+5 x-2=0$

Ex: $-0.2 x^{2}+2.5 x+8=0$

Note:
D. If given the answers for ' x ', how do we find the original quadratic equation?
-pg 89 \#3-8: pick 2 from each
-pg 97 \#2: pick 5
-new handout \#1-30: choose 15
-quiz/review/pretest/corrections/test

