MATH 11: UNIT 1.1 - Chp 1.1 (Mickelson): Factoring Quadratic Equations

A. Review of Math 10:
What is a quadratic equation?
-in Latin, 'quad' = 4, but 'quadra' is from 'quadratus' or 'quadrare' = make square

ie:

So: 'quadratic' = equation to the power of 2

-the word 'quadratic' was first used by John Wilkins (a clergyman and philosopher) for <u>An Essay towards a Real Character and Philosophical Language</u> (1668) in which, amongst other things, he proposed a universal language and a decimal system of measures which later developed to become the metric system.

B. Basic factoring:

i. Remove common factors

Ex: $5x^2 + 10$

Ex: $12x^4-8x^3+4x^2$

Ex: x(x+1) + 3(x+1)

ii) factoring ax^2+bx+c , a=1use after GCF, then 'criss cross', ac-method, break up the middle term, etc.

Criss-cross	AC-method	Break up the middle term
X ² +7x+12	X ² +7x+12	X ² +7x+12

Ex: x²-x-12

Ex: x²-xy-12y²

iii) difference of squares: $x^2-y^2 = (x-y)(x+y)$

Ex: 4x²-16

Ex: (x²-8x+16)-y²

Try and factor:

1) 3x²+15x+12

2) x²-7x-18

3) $-x^{3}y-x^{2}y^{2}+6xy^{3}$

4) $4 - (x+3)^2$

Do: Mickelson (2nd edition) pg 10 #5-8 (left), #11-14 (2 from each) -quiz next day

Math 11: Unit 1.2 Factoring Quadratic Polynomials ax^2+bx+c

A. How do we factor ax^2+bx+c ? -after checking for GCF, we have a choice of methods:

i) we could do 'criss-cross':

ex: $-8x^2 + 10x + 12$

ii) we could do 'break-up the middle term': ex: $-8x^2 + 10x + 12$

iii) we could do 'ac-method' ex: $-8x^2 + 10x + 12$

...up to you what you prefer.

Try:

A. $4x^2 - 20x + 25$

B. 3x² +11x-42

B. Special factors: perfect square trinomials re: $a^2 + 2ab + b^2 = (a+b)^2$

 $a^2 - 2ab + b^2 = (a-b)^2$

-for it to be a perfect square, all these conditions MUST be met:

- 1) last term MUST be positive and a perfect square
- 2) 1st term MUST be positive and a perfect square

3) 2 x (square root of 1st term x square root of last term) = middle term

Ex: x²+10x+25

ex: $64x^2 - 112x + 49$

WB pg 19 #1-4: left #6-7: left -quiz next day on unit 1.1 and 1.2

Math 11: unit 1.3 (chp 3.1) solving quadratic equations by factoring

A. What is a quadratic equation?
-it is a quadratic function set equal to zero
-we are solving for 'x'.
-if we are graphing quadratic equations, we want to see where the line will cross the 'x'-axis (covered later)

B. What is the 'general form' of a quadratic equation?

 $ax^2 + bx + c = 0$ where a, b, and c are real numbers, and a $\neq 0$

ex: $-2x^2 - 6x - 4 = 0$

C. How to solve quadratic equations by factoring

ex: $x^2 - 9x + 20 = 0$

D. Solving rational equations...use lowest common denominator!

Ex:

Ex:

WB pg 75 #6-9: left #10, 14 -quiz next day: unit 1.1-1.3 -

MATH 11: UNIT 1.4 - (chp 3.2): square root property and completing the square

A. Why and when do we use it?

-not all quadratic equations can be easily solved by factoring.
 ie: decimal/fraction answers
 ...therefore, need to do it algebraically

-not always the best way....just an option. Leave your answer in radical form.

B. How do we do the square root property? -remember: $5 \times 5 = 25$ and (-5) (-5) = 25

-so when do doing square root of a number, we need to consider both the positive and negative roots

ie: 5 x 5 = 25 AND (-5) (-5) = 25 also!

Ex:
$$x^2 - 25 = 0$$
 $x^2 + 25 = 0$

Ex:
$$4x^2 - 36 = 0$$
 (x-2)² - 49 = 0

C. How to do completing the square? -remember, a perfect square trinomial is: $(a+b)^2$

Ex:

Ex:

Ex:

...so let's try: $x^2 - 16x - 9 = 0$

Ex: x² - 6x - 27=0

Try: $x^{2}+6x+4=0$

Try: x²-4x-11=0

C. What if $a \neq 1$? -make a=1, then do as usual. -pg 81 #2-7: left -handout: #1-13: odd #27-43: odd

MATH 11: unit 1.5: QUADRATIC FORMULA

A. Why and when do we use it?

-short on time
-don't like 'completing the square'
Ax²+Bx+C = 0 doesn't factor easily
-use it to find roots of 'x'

B. What is it

From: $ax^2+bx+c = 0$ gives you:

And

C. How to do it?

Ex: $3x^2+5x-2=0$

Ex: $-0.2x^2+2.5x+8 = 0$

Note:

D. If given the answers for 'x', how do we find the original quadratic equation?

-pg 89 #3-8: pick 2 from each -pg 97 #2: pick 5

-new handout #1-30: choose 15

-quiz/review/pretest/corrections/test