Math 11: Unit 6.6 Reciprocal Equations
A. What is it?
-product of a number and its reciprocal = 1
Ex:
-similarly, functions can be reciprocals of each other also:
Ex: $y=x$ and $y=\quad$ are reciprocals
$E x: y=f(x)$ and $y=\quad$ are reciprocals
B. What does the reciprocal of a linear function look like?

Lets graph $\quad Y=x \quad$ vs $y=$
-note: when $y=$
...as ' $x$ ' gets very $\qquad$ , 'y' gets very $\qquad$ because as ' $x$ ' approaches infinity, ' $y$ ' gets closer to 'zero', but never quite reaches 'zero'... gives us horizontal asymptotes, or horizontal boundary lines
...as 'x' gets very $\qquad$ , 'y' gets very $\qquad$ because as ' $x$ ' approaches 'zero', 'y' gets closer to infinity...gives us vertical asymptote, or vertical boundary line.
B) if
is our standard, can we get a 'general equation' to predict what similar reciprocal functions look like?
-before: $y= \pm a(x-p)^{2}+q \quad$ can we create something for reciprocal linear functions

Do:

$$
\text { So: } \mathrm{y}= \pm a\left(\frac{1}{x-p}\right)+q
$$



