Math 11 Unit 5: Radicals (Chp 5 in workbook) Unit 5.1: Simplifying radicals
A. Vocabulary

$$
8 \sqrt[3]{27}
$$

i) Like radicals:
ii) mixed radicals:
iii) entire radicals:
iv) simplify radicals:
B. How to change an entire radical to a mixed radical?

Ex: $\sqrt{12}=$

$$
\text { Ex: }-3 \sqrt{12}=
$$

Ex $\sqrt[3]{54}=$

C. How to convert mixed radicals to entire radicals?

Ex: $3 \sqrt{12}=$
Ex: $-3 \sqrt{12}=$

Ex: $4 \sqrt[3]{2}=$
-WB pg 158 \#1-7: 4 from each
-extra practice handout: pg 7 sec 1.4 \#1-15, 25-30
pg 8: \#31-33, 45, 47

Math 11: unit 5.1b - more practice with radicals and rational exponents
A. Remember:
i) $(2)(2)=$
and $(-2)(-2)=$
so $\sqrt{4}=$
....so how can we tell which one we want?

$$
\begin{aligned}
\text {-what about }(2)(2)(2)(2)= & \text { and } \\
\text {..We see } \sqrt[4]{16}= & \text { and } \quad-\sqrt[4]{16}=
\end{aligned}
$$

...notice that as long as we have an even number for the exponent, we can NEVER simplify to a negative answer:

$$
\text { ie: } x^{4}=-16
$$

ii) what about:
$(-2)(-2)(-2)=$
so $\sqrt[3]{-8}=$
...so, notice that as long as we have an odd number for the exponent, we CAN simplify to a negative answer.
try: solve for ' x '

1) $x^{2}=16$

2) $x^{2}=-16$

3) $x^{5}=-32$
4) $x^{3}=-3$
B. Rational exponents:
-from grade 10 , for any positive integer ' n ' and ' a ':

$$
\begin{aligned}
& a^{\frac{1}{n}}=\sqrt[n]{a} ; \quad a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=\sqrt[n]{a^{m}} \quad \text { or }(\sqrt[n]{a})^{n} \\
& a^{-n}=\frac{1}{a^{n}} ; \quad \text { o } \quad a^{\frac{-m}{n}}=\frac{1}{a^{\frac{m}{n}}}=\frac{1}{\sqrt[n]{a^{n}}} \\
& \quad n \sqrt{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
\end{aligned}
$$

Try: write in radical form:
ex: $5^{\frac{1}{3}}=$
ex: $5^{\frac{7}{9}}=$
ex: $\quad 5^{-3}=$
$e x: 5^{-\frac{7}{9}}=$
ex: $\sqrt[3]{\frac{8}{27}}=$
....note: 'a' must be a positive integer!cannot do
$(-a)^{\frac{m}{n}}$ becuase the exponent laws and BEDMAS don't work consistently
try: $(-8)^{\left(\frac{4}{3}\right)\left(\frac{3}{4}\right)}$ and you will get 2 different answers
C. How to do square roots with positive powers of x ?
-the square roots of negative numbers is 'undefined' when discussing real numbers. You CAN do square roots of negative numbers as imaginary numbers (as part of a class of numbers called 'complex numbers'...not rational or irrational numbers that we normally use) -see: https://www.youtube.com/watch?v=65wYmy8Pf-Y and https://www.youtube.com/watch?v=oxF5VQSA4Hw -interesting, inter-related videos:
https://www.youtube.com/watch?v=gHUHZXjpwOE, https://www.youtube.com/watch?v=0OHiSZUvnOI https://www.youtube.com/watch?v=19c4c3SwtS8

$$
\begin{aligned}
& \text { ie: } \sqrt{-9}= \\
& \text { Ex: } \sqrt{x^{6}}= \\
& \text { ex: } \sqrt{x^{7}}= \\
& \text { Ex: } \sqrt{16 x^{8}}
\end{aligned}
$$

-do pg 151 \#2-7: pick 5 from each, 10, 12, 16

Math 11 Unit 5.2: Operations with Radicals (Add/Subtract)
A. How to do it?
-remember: $3 x+4 x=$

$$
3 x+4 y=
$$

-same with +/- radicals...you will need the same radicands:

Ex: $3 \sqrt{2}+4 \sqrt{3}=$
-radicals should be in simplest form before you try to +/- them:

$$
\text { Ex: } \sqrt{12}+\sqrt{18}=
$$

Ex: $\sqrt{12}+\sqrt{48}=$

Note: $\sqrt{25+16} \neq \sqrt{25}+\sqrt{16}$
B. Try:
-do WB pg 165 \#3abc, \#5-7 (left), 8ab
or: handout pg 9 \#1-28, 62a, 64a, 65, 66
-quiz next day: convert into mixed radical, convert into entire radical, +/radicals

Math 11: Unit 5.3 - Operations with Radicals (X)
A. How to do it?
-remember: $3 x \cdot 2 y=$
so:

And: $3(x+2)=$

So:
and

And:
B. What about multiplying binomials?
-remember: $(x+2)(3 x+4)=$ FOIL or rectangle method!

So:

$$
\text { Ex: }(2 \sqrt{7}+5 \sqrt{5})(4 \sqrt{3}+2 \sqrt{6})
$$

$$
\text { Ex: }(3 \sqrt{2}+\sqrt{1})(5 \sqrt{6}-2 \sqrt{7})
$$

-note: all the answers so far have at least 1 radical term. Is it possible to have non-radical answers?
-yes!....see part section ©: Conjugate Binomials!
C. What are conjugate binomials?
-numbers are the same, but one is ' + ' and the other is ' - ' -note:
-we can use this to help us to multiply binomials:

Ex:

Ex:
-so by multiplying conjugate binomials, I get:

So:

So again:
-when multiplying conjugate binomials, I noticed that I \qquad have any terms in my answers.
D. What about:
-in general:
-WB pg 175 \#2-5: pick 5 from each
-handout: pg 7 section 1.4 \# 34-45 (odd)
pg 8 part 2: \#9-16
pg 9 \#29-42 (odd)
-quiz next day on $+/-/ x$ radicals

Math 11 Unit 5.4: Operations with Radicals (Division)
A. How to do it?
-remember:

But what about:
-we CANNOT have square roots in the denominator, so how do we get rid of it? By a technique called 'rationalizing the denominator' (make the denominator into a rational number)!

So:

Ex: $\frac{2}{\sqrt{5}}$

Ex: $\frac{2}{3 \sqrt{5}}$

Ex: $\frac{2}{\sqrt{x-5}}$
B. What about binomial denominators that contain radicals?

$$
\text { Ex: } \frac{1}{\sqrt{3}-\sqrt{2}}
$$

$$
e x: \frac{2}{\sqrt{6}-\sqrt{3}}
$$

$$
\text { Try: i) } \frac{4}{\sqrt{5}-\sqrt{2}}
$$

$$
\text { ii) } \frac{3}{\sqrt{5}+2}
$$

$$
\text { iii) } \frac{2+\sqrt{3}}{1-\sqrt{3}}
$$

-WB pg 179 \#6-9: left, 11, 14, 15, 17
-handout pg 8 section 2 \#17-22
pg 9 \#43-52
-next day: quiz on x /divide with radicals

Math 11 Unit 5.5 Solving Radical Equations

A. Restrictions
-when solving radical equations, we need to consider restrictions, as we 'usually' cannot square root a negative number.

Ex: find the restrictions for:
i)
ii)
iii)
iv)
B. How to solve radical equations?
-we want to 'square' the equation to get rid of the square root sign. But by doing so, we sometimes get an extraneous, or bogus solution...so we need to check or solution.

Ex:
ex:

Ex: $\sqrt{2 x+5}=2 \sqrt{2 x}+1$

-WB pg 185 \#2-3: left, 4, 9

-assignment check/review, pretest, corrections, test

