A. What is a function?
-in Math 10, a function is:
i)
ii)

Ex:
ex:
B. What is a Quadratic Function?
-has a second-degree polynomial
ex: $y=x^{2}$ and $y=x^{2}-3 x-4$ are second degree polynomials
-standard form of a quadratic function:
-stand form of quadratic equation:
C. Features of Parabolas:
i)Vertex:
ii) symmetry:
iii) Maximum or minimum value:
iv) domain and range:
v)Intercepts:
D. Question: $y=x^{2}$

## E. Types of transformations

i) $Y=x^{2}+3$
ii) $y=x^{2}-3$
ii) What does $y=a x^{2}$ look like?
-let's compare:
$Y=x^{2}$
$y=$

$$
y=2 x^{2}
$$

-WB pg 27 \#4, 5
-handout pg 109 \#1-19, 32-34
F. What if given info and need to create the equation?

Ex: parabola with a vertex of ( $0,-2$ ) passes through point $(3,1)$. Write the equation in form of: $y=a x^{2}+q$

Try: parabola: vertex $(0,-7)$; point $(2,5)$, equation?
-handout Pg 109 \# 36-41, 48-63
-quiz next day

## Math 11: unit 2.2 A: Graphing $y=(x-p)^{\mathbf{2}}$

A. Review: $y= \pm a x^{2}+q$
-so far, axis of symmetry has been $x=0$, and vertex $(0, q)$
B. Compare: $y=x^{2}$ and $y=(x-p)^{2}$
$E x: y=x^{2}$
$y=(x-3)^{2}$
$y=(x+2)^{2}$

Therefore:
ii) symmetry for:
c. Therefore, we know:
all together, look at standard form of quadratic function:

$$
y= \pm a(x-p)^{2}+q
$$

So: $y=2(x-4)^{2}+3$
-WB pg 33 \#1-3: pick 4 from each
-HO pg 118 \#1-45: odds, and sketch
D. What if we need to find the standard form of the quadratic function: Ex: parabola: vertex (-1,4); passes through (-2,2). Equation?

Try: parabola: vertex $(6,4)$; passes through $(0,6)$. Equation?
-pg 119: \#46-69: odd...graph properly with $x$ and $y$-intercepts! -quiz next day: graphing, analyzing, find equation: $y=a(x-p)^{2}+q$

Math 11 2.2B: (chp 2.1 in Mickelson) Finding the equation of a parabola
A. How do we find the equation of a graph?

Re: standard form of quadratic function is $y=a(x-p)^{2}+q$

3 main types of questions:
i) given the graph, find the equation of the parabola ex:
step 1) can I see a vertex?
-so: $y=a(x-p)^{2}+q$
becomes:
step 2: can I see any points (whole numbers)?
-I see:
-I can use any of these points to substitute ' $x$ ' and ' $y$ ' to solve for 'a', so:
so: equation of the parabola is:
ii) given the vertex and 1 point, find the equation of the parabola
ex: find the quadratic function of a graph given the vertex is $(-2,-4)$ and the $y$ intercept: -3
step 1: can I see a vertex?
-yes! It is:
-so: $y=a(x-p)^{2}+q$ becomes:
step 2: I am given a point:
-I will use the point to substitute for 'x' and 'y' to solve for 'a' -so:
-so the equation for the parabola is:
iii) given 3 points ( 2 of the points must be symmetric... ie: have the same ' $y$ ' value), find the equation of the parabola
ex: find the equation of the quadratic function whose graph passes through the given points: $(-3,-1),(-2,5),(1,-1)$.
step 1: do I have 2 symmetric points?
-yes! ( $-3,-1$ ) and ( $1,-1$ )
-on a graph, it looks like:
-this means there must be axis of symmetry halfway between these 2
points.
-so:
step 2: given $y=a(x-p)^{2}+q$ and the axis of symmetry is $\qquad$ , then we now have:
step 3: pick any point and substitute for ' $x$ ' and ' $y$ ' to find ' $q$ ':
step 4: pick any remaining point and substitute for ' $x$ ' and ' $y$ ' to solve for 'a':
-so the equation for the parabola is:

Do: WB pg 43 \#1-3: left

Math 11: unit 2.3: Changing general form to Vertex (standard) Form
A. What do these forms look like? general form:
vertex (standard) form:
B. How to do the conversion?

$$
e x: y=x^{2}+6 x+8
$$

$$
e x: y=x^{2}-4 x+1
$$

$$
e x: y=2 x^{2}+28 x-19
$$

-WB pg 58 \#3-5: left
-do handout pg 131 \#1-16
\#17-22,
24-43 (odd)
-quiz next day: graph/analyze/vertex form
-review, pretest, corrections, test
$\qquad$

