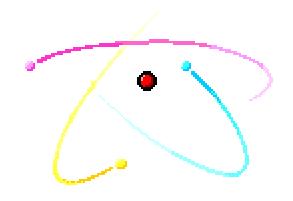
4.3 Balancing Chemical Equations

BC SCIENCE 10

- Chemical reactions result in chemical changes.
 - Bonds are broken and new substances are created.
 - The original substance(s), are called reactants,
 - The new substance(s) are called <u>PRODUCTS</u>.
- Chemical reactions 2NO + O₂ → 2NO₂



Coefficients

- Indicate the ratio of compounds in the reaction.
- Here, there is twice as much NO and NO₂ than as is O_2 .

Reviewing Counting Atoms and Balancing Chemical Equations

Subscripts

- ► C₁₂H₂₂O₁₁
 - ► There are 12 atoms of Carbon
 - ► There are 22 atoms of Hydrogen
 - ► There are 11 atoms of Oxygen
- ▶ If there is not a subscript listed, it is understood to be 1.
- ► Example: NaCl
 - ► There is one atom of Sodium
 - ► There is one atom of Chlorine

You Practice!

NaHCO₃

Sodium - 1

Hydrogen - 1

Carbon - 1

HCl

Hydrogen -

1

Chlorine -

1

Oxygen -3

There are times you will see a compound with parenthesis.

 $Pb(NO_3)_2$

The 2 after the parenthesis indicates there are two sets of the parenthesis.

 $Pb(NO_3) (NO_3)$

So, in counting the atoms, you would have the following:

Lead - 1

Oxygen - 6

Nitrogen -2

You Practice!!

 $(NH_4)_3PO_4$

 $Mg(OH)_2$

Nitrogen - 3

Hydrogen - 12

Phosphorus - 1

Oxygen - 4

Magnesium - 1

Oxygen - 2

Hydrogen - 2

Coefficient

$$2H_2SO_4$$

This means there are 2 compounds of Sulfuric Acid. Think:

 H_2SO_4 H_2SO_4

Counting the atoms:

Hydrogen - 4

Sulfur - 2

Oxygen - 8

You Practice!!

 $3H_3PO_4$

 $2H_2O$

Hydrogen - 9
Phosphorus -

3 Oxyge

Oxygen - 12

Hydrogen - 4

Oxygen - 2

Got It????

Movin Onlin

Chemical Equations

Chemical equations express what is happening in a chemical reaction using symbols.

Law of Conservation of Mass

In a chemical reaction, matter cannot be created or destroyed. It can only be <u>CHANGED</u>.

Therefore the ATOMS you start with (*Reactants*) must equal the ATOMS you finish with (*Products*)

Is it balanced?

$$H_2 + O_2 \longrightarrow$$

$$H_2O$$

Reactants

Products

$$H = 2$$

$$H = 2$$

$$0 = 2$$

$$0 = 1$$

This cannot happen. An oxygen atom cannot be destroyed.

So what do we do?

$$2H_2 + O_2$$
 $2H_2O$
Reactants: Products: $H = 4$ $O = 2$ $O = 2$

*** REMEMBER YOU CAN ONLY CHANGE THE SUBSCRIPTS (big numbers)- NOT THE COEFFICIENTS (little numbers)

You Practice!!! Is it balanced?

NOPE

$$HgO \longrightarrow Hg + O_2$$

$$N_2 + 3H_2 \longrightarrow$$

 $2NH_3$

YUP

 $ZnCl_2 + H_2$ YUP

More Practice

$$K + Br_2 \longrightarrow$$

2KBr

NOPE

2Fe +
$$O_2 \longrightarrow$$

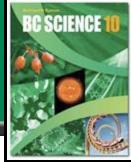
 $6Fe_2O_3$

NOPE

$$2Na + 2H_2O \longrightarrow$$

2NaOH + 1/2UP

Got It???



Strategies for Balancing Equations - remember

- Balance one compound at a time.
- Only change the coefficients (<u>BIG NUMBERS</u> in front); NEVER change subscripts (little numbers within the formula).
- ◆ If H and O appear in more than one place, attempt to balance them <u>LAST</u>.
- ◆ Polyatomic ions (such as SO₄²⁻) can often be balanced as a whole group.
- Always double-check after you think you are finished.

Chemical reactions

Chemical reactions Chemical Chemical equations equations Synthesis Balancing equations Decomposition Single replacement Predicting products Double replacement from reactants Combustion

Review: What is a Physical Change?

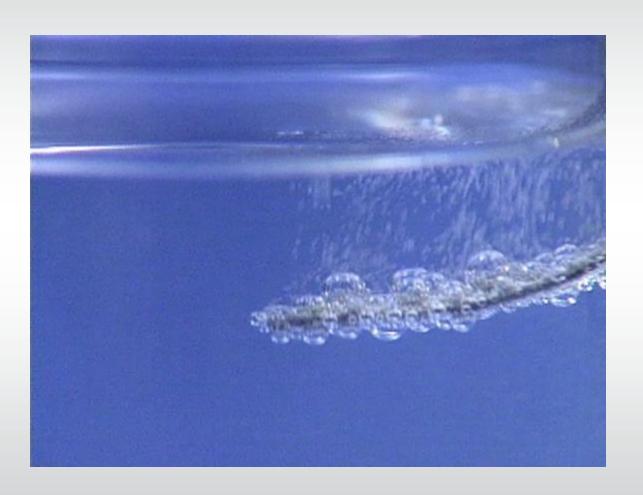
- A physical change alters the form of a substance, but does <u>NOT</u> change it to <u>ANOTHER SUBSTANCE</u>.
- No chemical bonds break

Example:

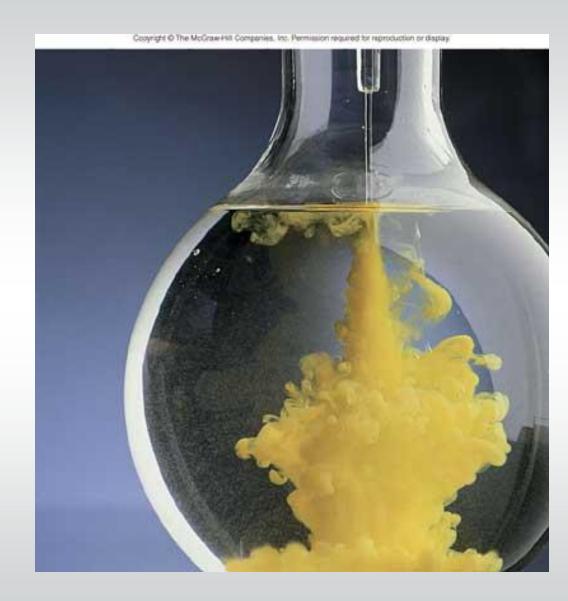
Making Orange Juice

What is a Chemical Change?

Example:

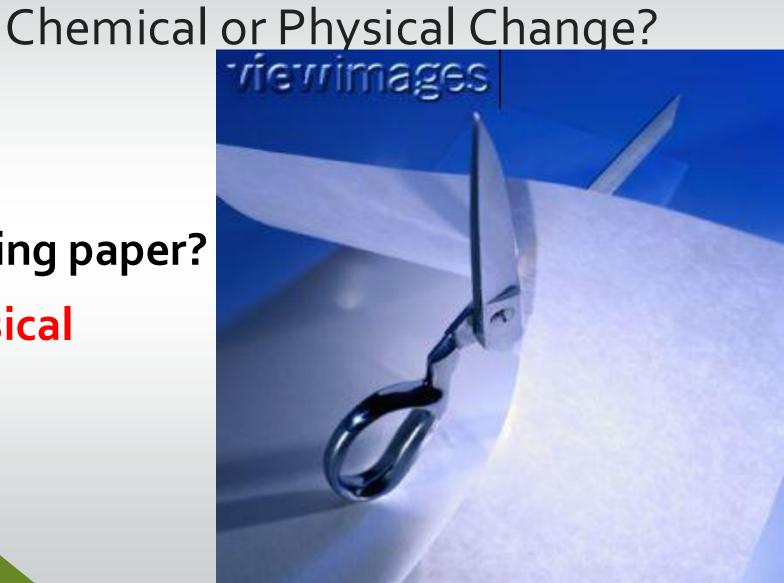

Baking a Cake

Produces light, sound or temperature change

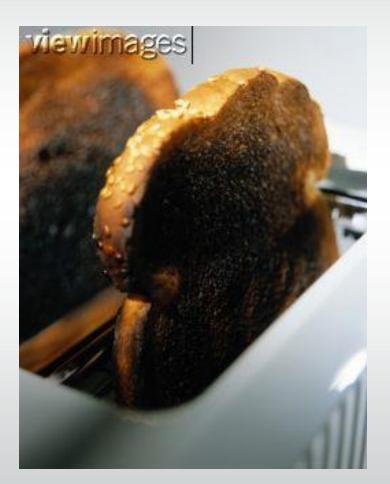


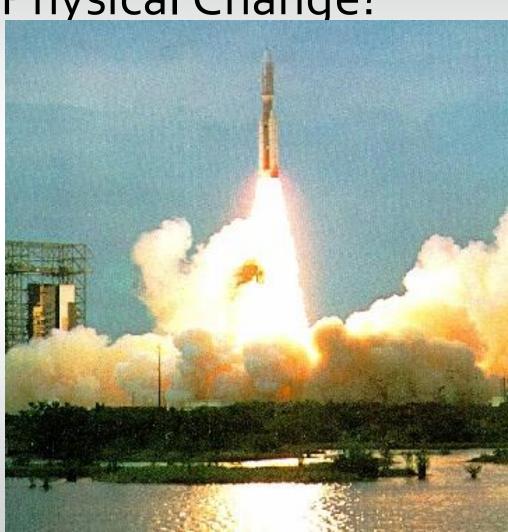
Makes new gases

Precipitation

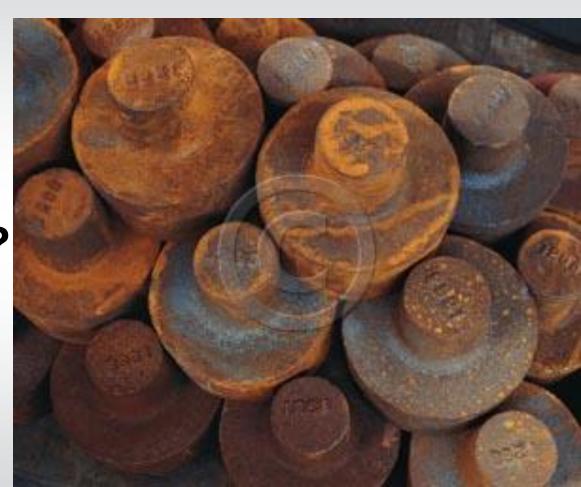

It looks like a cloudy solid in an otherwise clear solution.

Colour Change


- **Cutting paper?**
- **Physical**


- lce melting?
- Physical

- Toast burning?
- Chemical

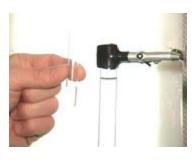


- Rocket fuel burning?
- Chemical

Metal rusting?

Chemical

- Disappearing puddle?
- Physical

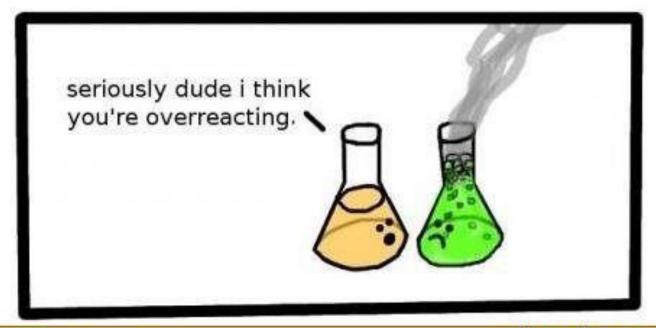

Dry ice?

Physical

Review: a Chemical Reaction

Indications of a Chemical Reaction

- Evolution of heat, light, and/or sound
- Production of a GAS
- Formation of a PRECIPITATE
- Color change



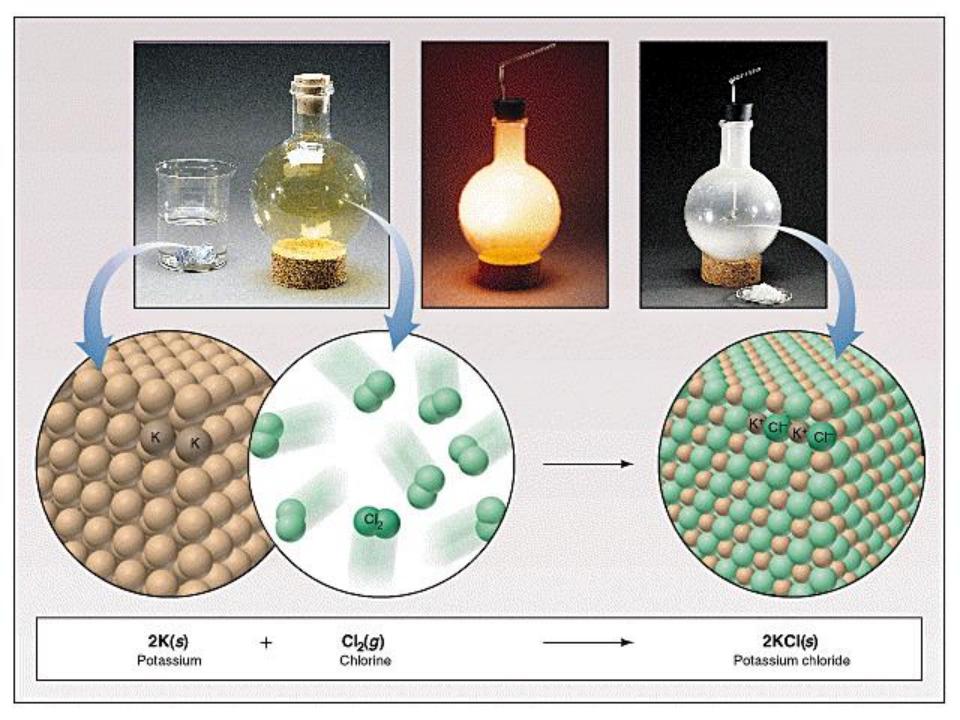
6-1 Chemical reaction types

joyreactor.com

6.1 Types of Chemical Reactions: Synthesis

- Synthesis reactions are also known as formation reactions.
 - Two or more reactants <u>JOIN</u> to form a compound.
 - \bullet A + B \rightarrow AB
 - $2Na + Cl_2 \rightarrow 2NaCl$
 - $2Mg + O_2 \rightarrow 2MgO$
 - $2N_2 + O_2 \rightarrow 2N_2O$

Sodium added to chlorine gas



Synthesis

Example C + O₂

General: $A + B \rightarrow AB$

Which ones are Synthesis?

(a)
$$2H_2 + O_2 \rightarrow 2H_2O$$

(b)
$$2AI + 3CuCl_2 \rightarrow 2AICl_3 + 3Cu$$

(c)
$$2KCIO_3 \rightarrow 2KCI + 3O_2$$

(d)
$$S_8 + 12O_2 \rightarrow 8SO_3$$

(e)
$$2Ti + 3 Cl_2 \rightarrow 2TiCl_3$$

Synthesis worksheet answers

a) $4Li + 2O_2 \square 2Li_2O$

b) P4 + $3O^2 \square 2P_2O_3$

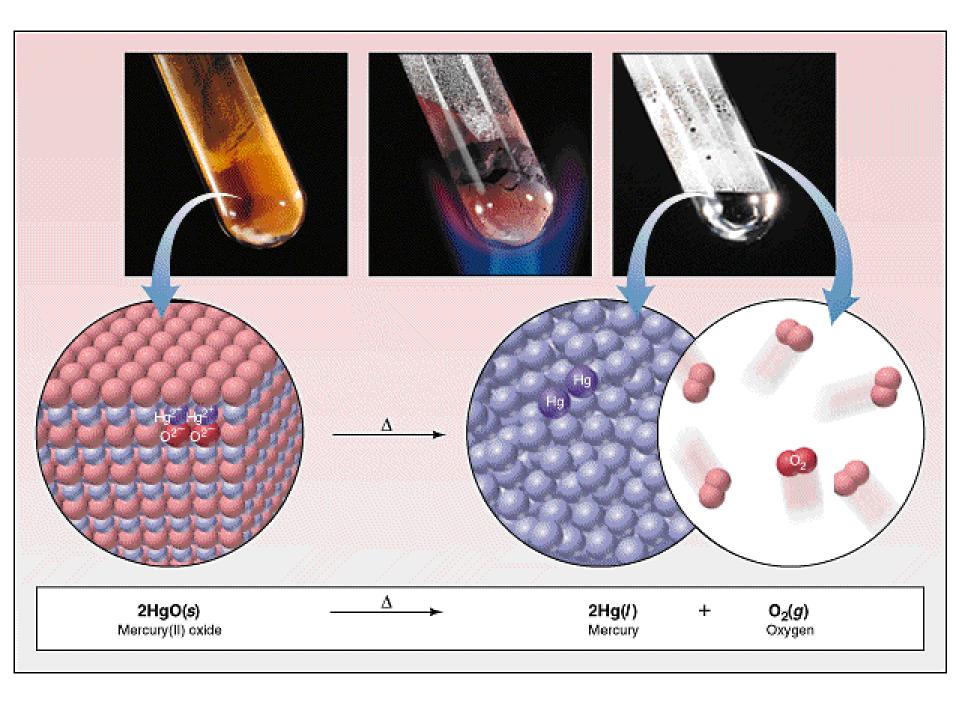
c) $3Mg + N_2 \square Mg_3N_2$

d) $K2O + H_2O \square 2KOH$

e) SO2 + H_2O \square H_2SO_3

2. Decomposition

- Decomposition -- the opposite of synthesis reactions.
 - One compounds breaks down into two or more products
 - ◆ AB → A + B



Decomposition

Example: NaCl

General: $AB \rightarrow A + B$

Hydrolysis of Water Decomposition

◆ Electricity through water breaks down ☑ hydrogen and oxygen

$$2H_2O \rightarrow 2H_2 + O_2$$

Practice Decomposition Reactions

Hydrogen Peroxide

$$2 H_2 O_2 \longrightarrow 2 H_2 O + O_2$$

Electrolysis of water

$$2 H_2 O \xrightarrow{electricity} 2 H_2 + O_2$$

Nitrogen triiodide

$$2 NI_3 \longrightarrow N_2 + 3I_2$$

General Form

$$AB \longrightarrow A + B$$

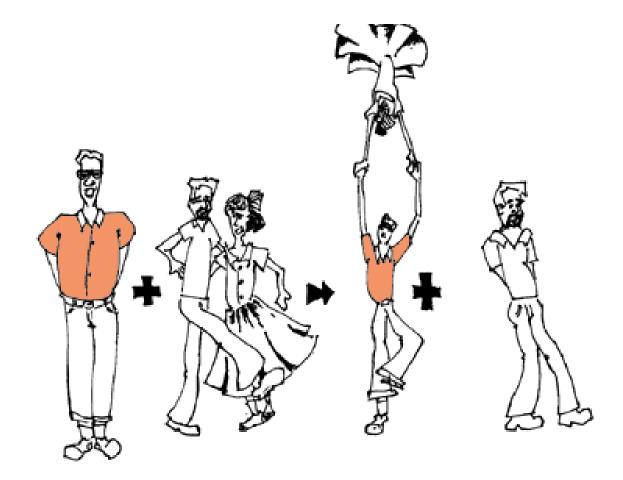
Synthesis Or Decomposition?

- (a) $CO_2 \rightarrow C + O_2$
- (b) $2Cr + 3F_2 \rightarrow 2CrF_3$
- (c) $2NaClO_3 \rightarrow 2NaCl + 3O_2$

Decomposition worksheet answers

a)
$$2Ag_2O \square 4Ag + O_2$$

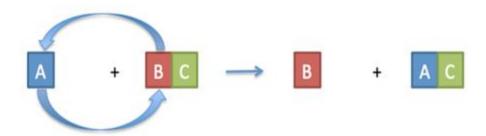
b) CuCO3
$$\square$$
 CuO + CO₂


c)
$$2Ag2O \square 4Ag + O_2$$

d)
$$2Sb2O5 \square 4Sb + 5O_2$$

e)
$$2 PBr_5 \square$$
 $2P + 5Br_2$

3. Single Replacement

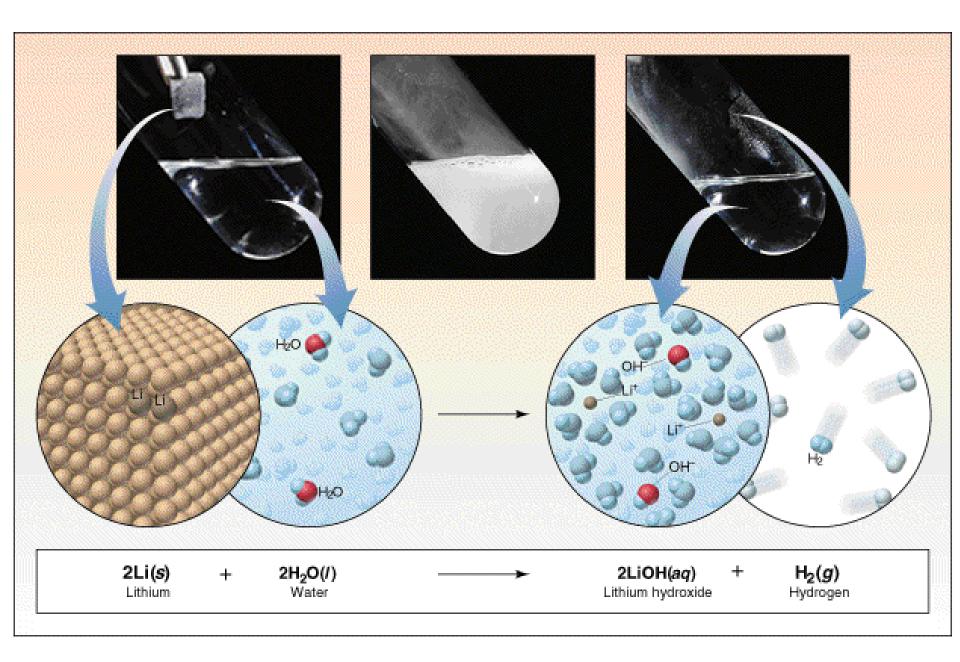


3. Single Replacement

- When single <u>ELEMENT</u> takes the place of an element in the compound
 - Metal (positive ions) replaces metal
 - The metals (front position) swap places

$$◆$$
 2Al + 3CuCl₂ \rightarrow 3Cu + 2AlCl₃

Single Displacement Reaction


See page 261

Non metal replaces a non metal


- When single element is a non-metal
- The non-metals (negative ions) swap places

• F2 + 2Nal □ I2 + 2NaF

Activity Series - you only get to replace if you are the stronger chemical

Foiled again – Aluminum loses to Calcium

Element Reactivity

Rb K Ba Halogen Reactivity Ca Na F_2 Cl_2 Mg ΑI Br_2 Mn Zn Cr Fe Ni Sn Pb H_2 Cu Hg Ag Pt Au

Single-Replacement Reactions

Activity Series

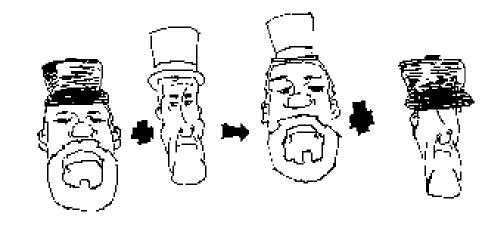
$$Fe + CuCl_{2} \longrightarrow FeCl_{2} + Cu \xrightarrow{Rb} K$$

$$Can Fe \ replace \ Cu? \ Yes$$

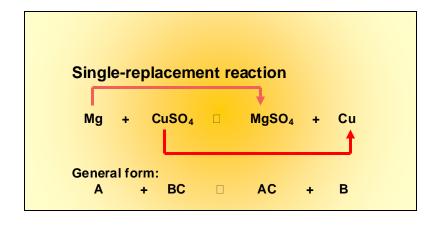
$$Zn + 2HNO_{3} \longrightarrow Zn(NO_{3})_{2} + H_{2} \xrightarrow{No} Kan \ Fe} Kan Fe \ replace \ H? \ Yes$$

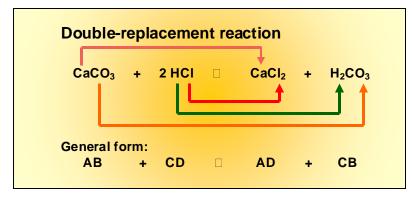
$$Mn = F_{2} \xrightarrow{No} Kan Fe} Kan Fe \ Resulting Fe \ Resulting$$

4. Double Replacement


- BC SCIENCE 10
- Two compounds react SWAP equivalent parts (e.g. metal swap with metal)
- AB + CD → AD + CB
- Double replacements always will make a <u>PRECIPITATE</u> (solid) within the new solution
 - When potassium chromate and silver nitrate react, they form a red precipitate, silver chromate, in a solution of potassium nitrate.
 - $K_2CrO_{4(aq)} + 2AgNO_{3(aq)} \rightarrow Ag_2CrO_{4(s)}(red) + 2KNO_{3(aq)}$

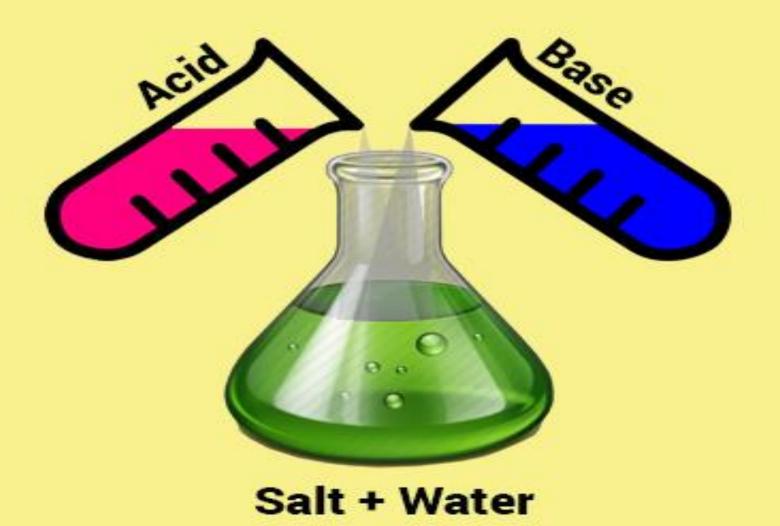
See page 262


4. Double Replacement



Review: Single vs Double Replacement Reactions

Formation of a solid: AgCl

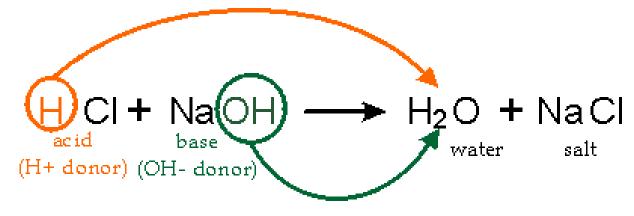


 $AgNO_3(aq) + KCI(aq) \square KNO_3(aq) + AgCI(s)$

lead (II) chloride + potassium iodide \longrightarrow potassium chloride + lead (II) iodide Pb²⁺ Cl¹⁻ K¹⁺ l¹⁻ Pb²⁺ Cl¹⁻ K¹⁺ l¹⁻ \longrightarrow KCl (aq) + Pbl₂ (ppt)

NEUTRALISATION

Neutralization (Acid-Base Reactions)



- Acid + base → salt + water
- H...(acid) +(base)OH \rightarrow Salt + H₂O

- \bullet H₂SO₄ + Ca(OH) ₂ \rightarrow CaSO₄ + 2H₂O
- ◆ Acid + base □ salt + water

Neutralization

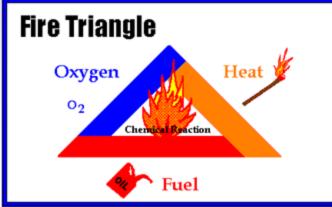
Acid + Base □ salt and water

A <u>SALT</u> is a metal and a non-metal.

Table salt NaCl is one example of a salt.

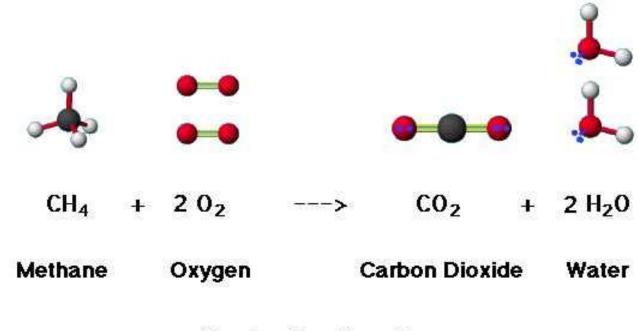
Combustion

- Combustion = when something <u>REACTS WITH</u> <u>OXYGEN -</u>
 — energy and an oxide.
 - Natural gas (methane) is burned in furnaces to heat homes.
 - $CH_4 + O_2 \rightarrow CO_2 + 2H_2O$
 - Carbohydrates like glucose combine with oxygen in our body to release energy.
 - $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$


Acetylene torch

See page 264

Combustion Reactions


- Also called burning!!!
- In order to burn something you need the 3 things in the "fire triangle":
 - 1) *A FUEL* (hydrocarbon)
 - 2) OXYGEN to burn it with
 - 3) Something to
- the reaction (spark)

Combustion of Methane

Combustion Reaction

6-1 Types of Chemical Reactions: Summary of Types

Table 6.1 Summary of Chemical Reactions

Reaction Type	Reactants and Products	Notes on the Reactants
Synthesis (combination)	A + B → AB	• Two elements combine (Figure 6.9).
Decomposition	AB → A + B	One reactant only (Figure 6.9)
Single replacement		
If A is a metal	$A + BC \rightarrow B + AC$	One element and one compound
If A is a non-metal	$A + BC \rightarrow C + BA$	
Double replacement	AB + CD → AD + CB	Two compounds react.
Neutralization (acid-base)	HX + MOH → MX + H ₂ O	Acid plus base
Combustion	$C_XH_Y + O_2 \rightarrow CO_2 + H_2O$	Organic compound with oxygen

See page 265

Your Turn!!

2 Al + 3 Fe(
$$NO_3$$
)₂ 2 Al(NO_3)₃ + 3 Fe Single Replacement

Combustion

Your Turn!!

$$2(NH_4)_3(PO_4) + 3Sr(OH)_2$$
 $Sr_3(PO_4)_2 + 6(NH_4)(OH)$

Double Replacement

$$H_2(SO_4) + 2 Na(OH)$$
 $\square Na_2(SO_4) + 2 H_2O$

Double Replacement

$$Zn + 2 Ag(NO_3)$$
 $Zn(NO_3)_2 + 2 Ag$

Single Replacement

$$Cu(NO_3) + KCl \square K(NO_3) + CuCl$$

Double Replacement

Review: Identify the type of reaction

1.
$$2 \text{ Sb} + 3 \text{ Cl}_2 \square 2 \text{ SbCl}_3$$

2.
$$2 \text{ Mg} + O_2 \square 2 \text{ MgO}$$

3.
$$CaCl_2 \square Ca + Cl_2$$

4.
$$2 \text{ NaClO}_3 \square 2 \text{ NaCl} + 3 \text{ O}_2$$

5. Fe + 2 HCl
$$\square$$
 FeCl₂ + H₂

6.
$$CuO + H_2 \square Cu + H_2O$$

7.
$$2 \text{ Al} + 3 \text{ H}_2 \text{SO}_4 \square \text{Al}_2 (\text{SO}_4)_3 + 3 \text{ H}_2$$