N	а	m	Δ	•
- 1 3	а		ᆫ	

Physics 12 M. Lam

Gravitational Potential Energy

Block:

- 1. How much work is required to lift a 1 200 kg object from the surface of Earth to an altitude of 9.6×10^5 m?
- 2. A 2.0×10^3 kg satellite travels in a stable circular orbit around the Earth. The orbital radius is 4.2×10^7 m.
 - a) What is the satellite's potential energy?
 - b) What is the satellite's kinetic energy?
 - c) What is total energy of the satellite?
- 3. A 1 500 kg satellite is in a stable circular orbit at an altitude of 4.0×10^5 m. What is the satellite's total energy in this orbit?
- 4. A 3 500 kg object is at rest on the surface of Earth.
 - a) How much work is required to lift it to an altitude of 4.0 ×10⁵ m?
 - b) How much work is required to lift it to infinity?
 - c) What is the escape velocity?
- 5. Show that $E_T = \frac{1}{2}E_p$ for a body in a circular orbit around a planet where E_T is the total mechanical energy of the orbiting body.
- 6. A ball is thrown vertically upwards from the surface of an asteroid of mass 4.60×10^{15} kg and radius of 8.30 km.
 - a) What height above the surface of the asteroid does the ball reach if it has an initial velocity of 5.0 m/s?
 - b) At what speed must the ball be thrown to escape the gravitational field of the asteroid?
- 7. A 6 540 kg satellite travels in a stable circular orbit around the earth. The orbital radius is 1.23×10^7 m. How much work is required to increase the orbital radius to 4.56×10^7 m?
- 8. Two planets, X and Y, are separated by a distance of 4.3×10^{11} m. Planet X has a mass of 6.6×10^{22} kg and Planet Y has a mass of 1.3×10^{23} kg.
 - a) At what point between the two planets would an astronaut have to be in order to feel no net force?
 - b) What is the gravitational potential energy of a 75 kg astronaut at this point?