KINETIC AND POTENTIAL ENERGY

KINETIC ENERGY IS ENERGY A MOVING OBJECT HAS BECAUSE OF

ITS MOTION.

· POTENTIAL ENERGY IS THE ENERGY STORED IN AN OBJECT.

MECHANICAL ENERGY IS THE SUM OF THE KINETIC AND POTENTIAL

ENERGY IN A SYSTEM.

· ENERGY IS A SCALAR.

·SI (JNIT: JOULE (J)

Ex: KINETIC ENERGY (J)

Ex=\frac{1}{2}mv^2 m: MASS (kg)

V: VELOCITY (\mathbb{G})

E_p= mah

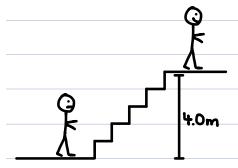
Ep: GRAVITATIONAL POTENTIAL ENERGY (J)

m: MASS (kg)
g: ACCELERATION DUE TO
GRAVITY (9.8 %)

h: HEIGHT (m)

GRAVITATIONAL POTENTIAL ENERGY
IS MEASURED RELATIVE TO A "ZERO"
SUCH AS THE GROUND. UNLESS SPECIFIED IN A POINT/HEIGHT OF YOUR CHOOSING.

 $E_p = \frac{1}{2}kx^2$


E, ELASTIC POTENTIAL ENERGY (J)

k: SPRING CONSTANT (A)

x: DISPLACEMENT FROM EQUILIBRIUM POSITION (m)

EXAMPLE

HOW MUCH GRAVITATIONAL
POTENTIAL ENERGY IS GAINED WHEN
AN 80 kg PERSON CLIMBS A 4.0 m HIGH
STAIRCASE?

EXAMPLE
WHICH HAS MORE KINETIC ENERGY?
a) A 50g BULLET AT 700 € b) A 2000 kg CAR AT 3.5 €
MORK
WORK IS THE SCALAR PRODUCT
BETWEEN FORCE AND
DISPLACEMENT.
DIST CACELLEN .
W:WORK (J)
W=F·d F: FORCE (N)
1 TORCE (14)
d: DISPLACEMENT (m)

SCALAR PRODUCT: AKA DOT PRODUCT TWO PARALLEL VECTORS THAT MULTIPLY TO A SCALAR IF NOT PARALLEL, USE THE PARALLEL COMPONENT.

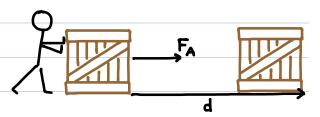
WORK IS THE AREA UNDER AN F-d GRAPH

A CONSERVATIVE FORCE IS ONE FOR WHICH WORK DONE DEPENDS ONLY THE STARTING AND ENDING POINTS OF MOTION AND NOT ON THE PATH TAKEN.

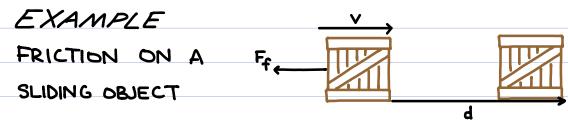
EXAMPLE

GRAVITATIONAL FORCE, SPRING FORCE

A NONCONSERVATIVE FORCE IS ONE FOR WHICH WORK DEPENDS ON THE PATH TAKEN


EXAMPLE FRICTION

WORK ENERGY THEOREM: THE WORK
DONE BY ALL NONCONSERVATIVE
FORCES IS EQUAL TO THE CHANGE IN
THE MECHANICAL ENERGY OF THE
SYSTEM.


POSITIVE WORK: FORCE IS IN THE SAME DIRECTION AS DISPLACEMENT.

POSITIVE WORK MEANS THE OBJECT GAINS ENERGY.

EXAMPLE
PUSHING A CRATE
ACROSS THE FLOOR

- NEGATIVE WORK: FORCE IS IN THE OPPOSITE DIRECTION OF DISPLACEMENT.
- NEGATIVE WORK MEANS THE OBJECT LOSES ENERGY.

- NO WORK IS DONE IF THE OBJECT DOES NOT MOVE.
- NO WORK IS DONE IF THE FORCE AND DISPLACEMENT ARE PERPENDICULAR.

EXAMPLE

PUSHING A

WALL

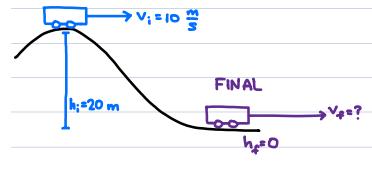
GRAVITY ON AN OBJECT SLIDING ACROSS A

DERIVING POTENTIAL ENERGY
HOW MUCH WORK IS REQUIRED TO LIFT
A MASS m UP TO A HEIGHT h?

DERIVING KINETIC ENERGY
HOW MUCH WORK IS REQUIRED TO
ACCELERATE A MASS m FROM REST
TO A SPEED v?

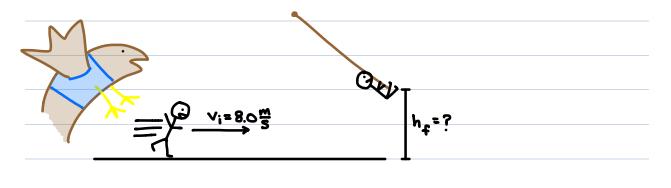
EXAMA A 20 kg FRICTION FORCE C STARTS ITS SPE PUSHED	CRATE VLESS I DF 80 N FROM EED AF	FLOOR 1. IF T REST TER 1	WITH HE CRA , WHAT T HAS	A TE WILL	

CONSERVATION OF MECHANICAL ENERGY IF ONLY CONSERVATIVE FORCES ACT ON A SYSTEM, THE TOTAL MECHANICAL ENERGY IS CONSTANT.


$$E_{k_1} + E_{p_1} = E_{k_1} + E_{p_p}$$

$$\frac{1}{2}mv_1^2 + mgh_1 = \frac{1}{2}mv_1^2 + mgh_p \quad \text{CANCEL OUT.}$$

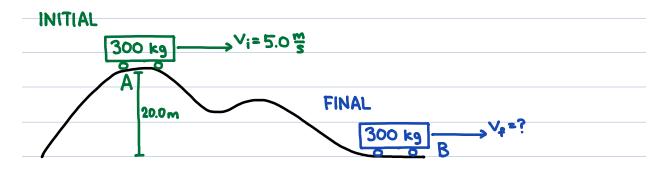
EXAMPLE


A ROLLER COASTER IS AT THE TOP OF A 20 m HIGH HILL WITH A SPEED OF 10 %. WHAT IS ITS SPEED AT THE BOTTOM OF THE HILL?

INITIAL

E	XA	MA	2	E
---	----	----	---	---

THE THOMPSON TROJAN IS RUNNING FROM THE HAMBER GRIFFIN AT A SPEED OF 8.0 . HE GRABS AN OVERHEAD ROPE AND SWINGS UPWARD HOW HIGH DOES HE SWING?


THE WORK DONE BY FRICTION, A NONCONSERVATIVE FORCE, RESULTS IN A TRANSFER OF MECHANICAL ENERGY INTO THERMAL ENERGY.

$$E_{i} = E_{f} + Q$$
 Q: HEAT (J)

 $F_{f} : FORCE OF$
 $Q = F_{f} d$
 $\uparrow \uparrow \uparrow \uparrow d : DISPLACEMENT (m)$
 $W = F d$

EXAMPLE

A 300 kg ROLLER COASTER CAR IS
TRAVELLING ALONG A TRACK AS SHOWN
WITH A SPEED OF 5.0 F AT POINT A.
WHAT IS THE SPEED OF THE CAR AT
POINT B IF IT LOSES 29000 J OF
ENERGY TO HEAT (DUE TO FRICTION)?

POW	ER
_	

- POWER IS THE RATE AT WHICH ENERGY IS ADDED OR USED.
- · SI UNIT: WATT (W)

$$P = \frac{W}{t}$$
 P:POWER (W)
W:WORK (J)
t:TIME (s)

EXAMPLE

AN ELEVATOR CAN LIFT A LOAD OF 1000 kg To A HEIGHT OF 30 m IN 40 s. WHAT IS THE POWER OUTPUT OF THE ELEVATOR?

EFFICIENCY

EFFICIENCY =
$$\frac{E_{out}}{E_{in}}$$
= $\frac{P_{out}}{P_{in}}$

ENERGY (J) ENERGY
ENERGY
ENERGY (J) ENERGY
ENERGY (J) REGUIRED
POUT: OUTPUT
POWER (W)
P.: INPUT
POWER (W)

· EFFICIENCY IS EXPRESSED AS A PERCENTAGE (*100 %)

EXAMPLE AN ELECTRIC MOTOR REQUIRES
850 J TO MOVE A 10 kg MASS UP TO A HEIGHT OF 5.0m. WHAT IS
THE EFFICIENCY OF THE MOTOR?