
LEIESTROMAYENTES INDUCTION

INDUCED EMF

THE MAGNETIC FORCE ON MOVING CHARGES

ACTS IN A NAY THAT SEPARATES

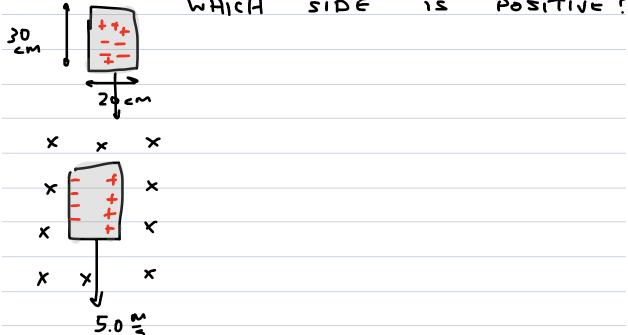
LHARGES - INCREASING THEIR POTENTIAL

ENERGY.

· CONSIDER THE WORK DONE ON THE CHARGES:

2: INDUCED ELECTRIC POTENTIAL, V

B: MAGNETIC FIELD STRENGTH, T

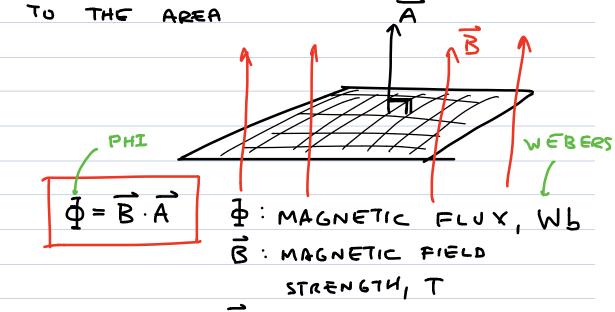

1: WIOTH OF CHARGE

(I TO T AND B)

V: VELOCITY, 5

EXAMPLE

A 20 cm × 30 cm ALUMINUM PLATE IS
DROPPED THROUGH A MAGNETIC FIELD
of 0.002 T. WHAT IS THE IN DUCED
VOLTAGE WHEN THE SPEED REACHES 5.0 ??
WHICH SIDE IS POSITIVE?


MAGNETIC FLUX

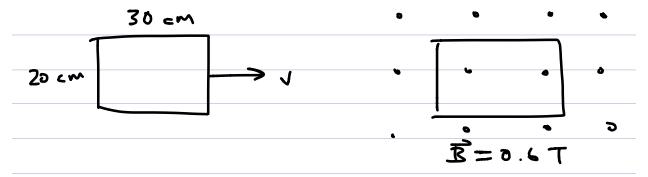
MAGNETIX FLUX IS THE SCALAR PRODUCT BETWEEN THE MAGNETIC FIELD AND

THE AREA VECTOR.

· AREA VECTOR: MAGNITUDE IS EQUAL TO

THE AREA; DIRECTION IS PERPENDICULAR

A: AREA OF LOOP, M2


· IF B IS PARALLEL TO THE SURFACE

(I.E. THE MAGNETIC FIELD DOES NOT GO

THROUGH THE AREA), THERE IS NO FLUX

EXAMPLE

CALCULATE THE CHANGE IN MAGNETIC
FLUY THAT OCCURS IN THE LOOP.

$$\triangle \Phi = \Phi_f - \Phi_f$$
= BA
= (0.6) (0.2 × 0.3) - 0.036 Wb

FARADAY'S LAW

WHEN THERE IS A CHANGE TO THE

MAGNETIC ENVIRONMENT OF A COIL OF

WIRE, AN EMF IS INDUCED WHICH

IS PROPORTIONAL TO THE NUMBER OF

COILS AND THE RATE OF CHANGE

OF FLUX.

LENZ'S LAW

THE INDUCED CURRENT ACTS IN A

DIRECTION THAT ATTEMPTS TO

NOUTRALIZE ANY EXTERNAL CHANGE

IN FLUX

8= - N 2=

E: INDUCED ELECTRIC

POTENTIAL, U

N: NUMBER OF COILS

P: MAGNETIC FLUX, WL

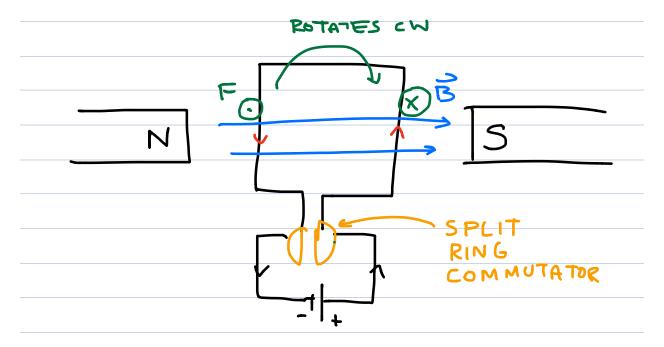
t: time, c

EXAMPLE A 20 cm × 30 cm RECTANGULAR LOOP MOVES OUT OF A 5.0 × 10-2 T MAGNETIC FIELD CALCULATE THE EMP INDUCED AT THE FOLLOWING SPEEDS a) 1.0 \(\frac{1}{2}\) X X b) 4.0 肾 X WHAT IS THE DIRECTION X OF THE CURRENT? × × X

$$\mathcal{E} = \sqrt{\frac{\Delta}{\Delta t}}$$

$$= B w \left(\frac{\Delta l}{\Delta t} \right)$$

$$= (0.050)(0.7)(1.6)$$


ELECTRIC MOTORS AND GENERATORS

. A MOTOR USES CURRENT IN A MAGNETIC

FIELD TO PRODUCE MOTION

. A GENERATOR USES MOTION IN A

MAGNETIC FIELD TO INDUCE AN EMF

· A SPLIT RING COMMUNTOR REVERSES THE

CURRENT IN THE LOOP WHEN THE LOOP HAS

ketated 180° (so the torque is always

IN THE SAME DIRECTION)

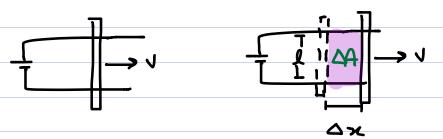
COUNTER EMF AKA BACK EMF

WHENEVER A COIL TURNS IN A B-FIELD AN EMF IS INDUCED IN THE COIL THAT 6PPOSES THE CURRENT IN THE COIL (ACCORDING TO FARADAY'S LAW AND LENZ'S LAW) · A MOTOR ACTS AS A GENERATOR WHENEVER IT TURNS.

PHECTIVE EMF

E - VCOUNTER = IT E APPLIED VOLTAGE, V VIOUNTER: INDUCED

> COUNTER EMF, V] : CURRENT, A


r: RESISTANCE, JZ

WHEN THE MOTOR DOES NOT MOVE, VCOUNTER = O AND E=Ir BECAUSE r 15 SMALL, I IS BIG - DANGGROUSLY BIG.

EXAMPLE: RAIL GUN

A 25cm LONG METAL ROD OF MASS 1.0 kg 15 LAID ACROSS TWO LEVEL COMDUCTING RAILS IN A UNIFORM MAGNETIC FIELD B=0.5T. WHEN A VOLTAGE OF E=15V IS CONNECTED THE ROD IS INITIALLY AT REST. THE ROD MAS A RESISTANCE OF 0.75 I 157 Y X K A) WHAT IS THE INITIAL ACCELERATION OF THE ROD? $F_B = IB$ $I = \frac{V}{R}$ = (0.2)(20)(0.5) = $\frac{15}{0.75}$ RIGHT

$$\varepsilon = -\frac{\Delta \dot{q}}{\Delta t} \qquad (N=1)$$

$$= -\frac{B\Delta A}{\Delta t}$$

$$= -\frac{B L/\Delta x}{(\Delta t)}$$

$$= -B L \sqrt{x}$$

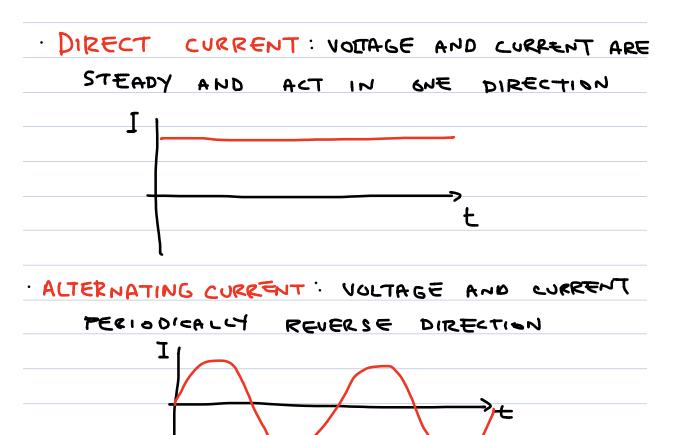
$$= -(0.5)(0.2)(50)$$

 $= 5$ V

c) WHAT IS THE MAXIMUM SPEED OF THE ROD?

THE ROD STOPS ACCELERATING WHEN FOOD

From b)
$$\mathcal{E} = -Bl\gamma$$

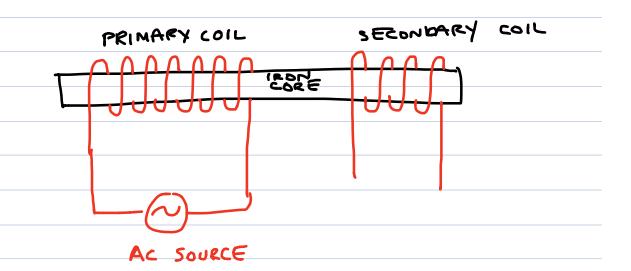

$$\gamma = -\frac{\mathcal{E}}{Bl}$$

$$= 15$$

$$(0.5)(0.2)$$

$$= 150\frac{\alpha}{5}$$

ALTERNATING CURRENT (AC) US DIRECT CURRENT (DC)



TRANS FORMERS

· TRANSFORMERS ARE DEVICES THAT CHANGE VOLTAGE

AND CURPENT USING THE PRINCIPLE OF

ELECTROMAGNETIC INDUCTION.

- 1 AN ALTERNATING CURRENT IN THE PRIMARY
 COIL PRODUCES AN ALTERNATING B-FIELD
- THE ALTERNATHS B-FIELD IS ALMOST

 TOTALLY CONTAINED IN THE IREN CORE

 WHICH IS CONNECTED TO THE

 SECONDARY COIL
- AN ALTERNATING B-FIELD MEANS THERE

 IS A CHANGE IN FLUX. THIS RESULTS

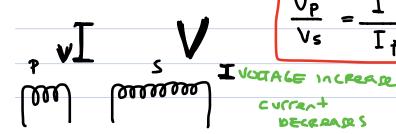
 IN AN INDUCED VOCTAGE IN THE

 SECONDARY COIL. THE RATE OF CHANGE

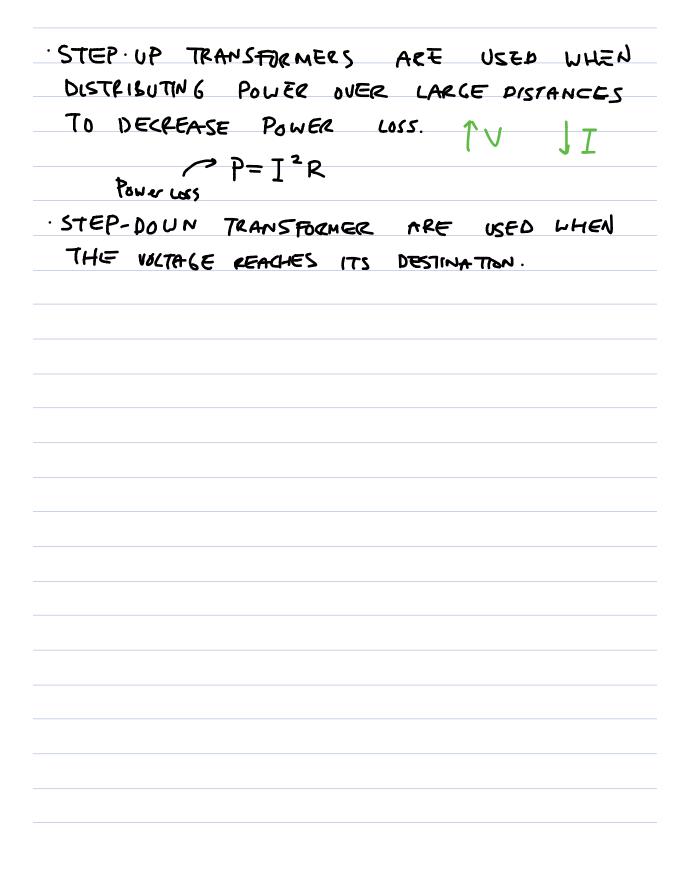
 IN FLUX IS ESSENTIALLY THE SAME

 FOR BITH COILS (A and AB ARE

THE SAME)


CONSIDER THE EMF IN EACH COIL:

(1) BY (2) DIVIDE


$$\frac{V_P}{V_S} = \frac{N_P}{N_S}$$

- · STEP-UP TRANSFORMER: NS > NP S. Vs>Vp
- · STEP-DOUN TRANSFORMER · NS<NP SO VS<VP

· CONSIDER THE CONSERVATION OF ENERGY.

· A DECREASE IN VOLTAGE RESULTS IN AN INCREASE IN CURRENT.

