The Ultimate Vector Momentum Assignment

Key Formulae:

$$
\stackrel{\rightharpoonup}{p}=m \vec{v}_{\text {and }} \Delta \stackrel{\rightharpoonup}{p}=\stackrel{\rightharpoonup}{F} \Delta t
$$

REMEMBER, MOMENTUM IS A VECTOR!!!! YOU WILL BE DRAWING TIP-TOTAIL VECTOR DIAGRAMS FOR MOST QUESTIONS, UNLESS NO ANGLES ARE MENTIONED!

9401
1.

A 2.0 kg puck travelling due east at $2.5 \mathrm{~m} / \mathrm{s}$ collides with a 1.0 kg puck travelling due south at $3.0 \mathrm{~m} / \mathrm{s}$. They stick together on impact. What is the resultant direction of the combined pucks?
A. $31^{\circ} \mathrm{S}$ of E
B. $40^{\circ} \mathrm{S}$ of E
C. $50^{\circ} \mathrm{S}$ of E
D. $59^{\circ} \mathrm{S}$ of E
2.

A 5.20 kg block sliding at $9.40 \mathrm{~m} / \mathrm{s}$ across a horizontal frictionless surface collides head on with a stationary 8.60 kg block. The 5.20 kg block rebounds at $1.80 \mathrm{~m} / \mathrm{s}$. How much kinetic energy is lost during this collision?
(7 marks)
3.

Two gliders having equal masses, each travelling along a level frictionless track at the same speed, approach each other head on. They stick together on impact and remain stationary at the point of impact. Does this situation mean that momentum has been lost during this particular collision? State your answer with supporting arguments which use principles of physics.
\qquad
9406
4.

A puck sliding on a frictionless table undergoes a change in momentum due to a constant force. Which of the following expressions could be used to determine the change in momentum?
A. $F \times \Delta d$
B. $F \times \Delta t$
C. $\mathrm{F} \times \Delta \mathrm{v}$
D. $\mathrm{F} \times(\Delta \mathrm{v} / \Delta \mathrm{t})$

5.

A 4000 kg space vehicle consists of a 2500 kg main capsule and a 1500 kg probe. The space vehicle is travelling at $120 \mathrm{~m} / \mathrm{s}$ when an explosion occurs between the capsule and the probe. As a result, the probe moves forward at $140 \mathrm{~m} / \mathrm{s}$, as shown in the diagram below.

Before

After

a) (i) What is the speed of the main capsule after the explosion?
(3 marks)
(ii) What is the magnitude of the impulse given to the probe?
(2 marks)
b) Define impulse and briefly explain why the impulse on the probe is equal in magnitude to the impulse on the main capsule.
(4 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9501
6.

Impulse is measured in which units'?
A. J
B. N
C. $\mathrm{N} \cdot \mathrm{m}$
D. $\mathrm{N} \cdot \mathrm{s}$

9508
7.

Two carts collide while travelling on a smooth surface. It is found that the sum of the kinetic energies of the carts after the collision is the same as before the collision. This collision must be
A. elastic.
B. inelastic.
C. between carts of identical mass.
D. between carts that stick together.
8.

In order to stop two sliding objects, the greater impulse must be given to the one having the greater
A. mass.
B. speed.
C. velocity.
D. momentum.

9601
9.

Which expression is equal to the net force on an object?
A. $\frac{\Delta p}{\Delta t}$
B. $\frac{W}{\Delta t}$
C. $m \Delta v$
D. ΔE

9606
10.

A 60 kg girl and her 45 kg brother are at rest at the centre of a frozen pond. He pushes her so that she slides away at $2.4 \mathrm{~m} / \mathrm{s}$. How much total work is done? (Ignore friction.)

A. 58 J
B. 170 J
C. 350 J
D. 400 J

9608
11.

Impulse is defined as
A. total energy.
B. total momentum.
C. a change in energy.
D. a change in momentum.

9701
12.

Which of the following describes kinetic energy and momentum before and after a perfectly elastic collision?
A.

Kinetic Energy	Momentum
Not Conserved	Not Conserved
Not Conserved	Conserved
Conserved	Not Conserved
Conscrved	Conserved

13.

A 0.30 kg ball rolls off a horizontal surface as shown in the diagram. What is the magnitude of the impulse given to the ball by gravity during the 0.90 s it takes the ball to fall to the ground?

A. $1.5 \mathrm{~N} \cdot \mathrm{~s}$
B. $2.6 \mathrm{~N} \cdot \mathrm{~s}$
C. $3.0 \mathrm{~N} \cdot \mathrm{~s}$
D. $4.1 \mathrm{~N} \cdot \mathrm{~s}$
14.

Two steel pucks collide as shown in the diagram below.

BEFORE COLLISION

$$
\begin{aligned}
& m_{2}=0.30 \mathrm{~kg} \\
& v_{2}=0
\end{aligned}
$$

AFTER COLLISION

Determine the speed and direction (angle θ) of the 0.30 kg puck after the collision.

9706
15.

Which equation is a form of Newton's second law?
A. $\vec{F}_{n e t}=\frac{\overrightarrow{\Delta p}}{\Delta t}$
B. $W=\Delta E$
C. $E_{k}+E_{p}=E_{k}{ }^{\prime}+E_{p}{ }^{\prime}$
D. $\varepsilon=-N \frac{\Delta \Phi}{\Delta t}$
16.

A 5.0 kg object travelling at $1.6 \mathrm{~m} / \mathrm{s}$ collides with an object of unknown mass m_{2} travelling at $2.5 \mathrm{~m} / \mathrm{s}$. The two objects stick together and move towards the right as shown in the diagram.

Find the mass of object m_{2}.

9708
17.

Which of the following is a correct unit for impulse?
A. N
B. $\mathrm{N} \cdot \mathrm{m}$
C. N / s
D. $\mathrm{N} \cdot \mathrm{s}$
18.

A 0.15 kg ball travelling at $25 \mathrm{~m} / \mathrm{s}$ strikes a wall and bounces back in the opposite direction at $15 \mathrm{~m} / \mathrm{s}$. The ball is in contact with the wall for 0.030 seconds. What average force does the wall exert on the ball?
A. 25 N
B. 50 N
C. $1.0 \times 10^{2} \mathrm{~N}$
D. $2.0 \times 10^{2} \mathrm{~N}$
19.

A 3.0 kg car A travelling $8.5 \mathrm{~m} / \mathrm{s}$ on a frictionless track collides and sticks on to a stationary 2.0 kg car B.

a) The combined cars will reach what height h ?
b) The steepness of the slope is decreased as shown below.

With this decreased slope, the combined cars will reach (check one response)
\square a lesser height.
\square the same height.
\square a greater height.
c) Using principles of physics, explain your answer to b).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9801
20.

Two blocks are initially held together on a frictionless surface as shown in the diagram below.

When the string is cut, the blocks fly apart as shown.

What work was done on the blocks by the spring?
A. 0 J
B. 0.29 J
C. 0.43 J
D. 0.58 J
21.

A ball is thrown at $15 \mathrm{~m} / \mathrm{s}$ towards various barriers. In which case does the ball experience the greatest impulse?
A. The ball hits a wall and rebounds at $2.0 \mathrm{~m} / \mathrm{s}$.
B. The ball hits a wall and rebounds at $7.0 \mathrm{~m} / \mathrm{s}$.
C. The ball hits a wall, sticks to it and stops moving.
D. The ball breaks a window and continues moving at $10 \mathrm{~m} / \mathrm{s}$ in the same direction.
22.

A 7.0 kg object moving at $12 \mathrm{~m} / \mathrm{s}$ to the east explodes into two unequal fragments. The larger 5.0 kg fragment moves at $15 \mathrm{~m} / \mathrm{s}$ south.

What is the velocity (speed and direction) of the smaller 2.0 kg fragment?
(7 marks)
23.

Which of the following are equivalent units for change in momentum?
A. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
B. $\mathrm{N} \cdot \mathrm{s}$
C. $\mathrm{kg} \cdot \mathrm{s} / \mathrm{m}$
D. N / s
24.

A 1.2 kg ball moving due east at $40 \mathrm{~m} / \mathrm{s}$ strikes a stationary 6.0 kg object. The 1.2 kg ball rebounds to the west at $25 \mathrm{~m} / \mathrm{s}$. What is the speed of the 6.0 kg object after the collision?
A. $3.0 \mathrm{~m} / \mathrm{s}$
B. $13 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $65 \mathrm{~m} / \mathrm{s}$
25.

The front of an automobile is designed to crumple in a collision in order to reduce the injury to the occupants. Discuss briefly the physics of how this design feature improves safety for the occupants.

9808
26.

A 900 kg car travelling at $12 \mathrm{~m} / \mathrm{s}$ due east collides with a 600 kg car travelling at $24 \mathrm{~m} / \mathrm{s}$ due north. As a result of the collision, the two cars lock together and move in what final direction?
A. $45^{\circ} \mathrm{N}$ of E
B. $53^{\circ} \mathrm{N}$ of E
C. $63^{\circ} \mathrm{N}$ of E
D. $69^{\circ} \mathrm{N}$ of E

9901
27.

Which of the following best represents the momentum of a small car travelling at a city speed limit?
A. $\quad 1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B. $10000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C. $100000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D. $1000000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
28.

A 0.080 kg tennis ball travelling east at $15 \mathrm{~m} / \mathrm{s}$ is struck by a tennis racquet, giving it a velocity of $25 \mathrm{~m} / \mathrm{s}$, west. What are the magnitude and direction of the impulse given to the ball?

	MAGNITUDE	DIRECTION
A.	$0.80 \mathrm{~N} \cdot \mathrm{~s}$	Eastward
B.	$0.80 \mathrm{~N} \cdot \mathrm{~s}$	Westward
C.	$3.2 \mathrm{~N} \cdot \mathrm{~s}$	Eastward
D.	$3.2 \mathrm{~N} \cdot \mathrm{~s}$	Westward

29.

A 40000 kg rail car travelling at $2.5 \mathrm{~m} / \mathrm{s}$ collides with and locks to a stationary 30000 kg car. Determine the speed of the locked cars and state whether the collision is elastic or inelastic.
A.

SPEed OF Locked Cars	TYPE OF COLLISION
$1.4 \mathrm{~m} / \mathrm{s}$	Elastic
$1.4 \mathrm{~m} / \mathrm{s}$	Inelastic
$1.9 \mathrm{~m} / \mathrm{s}$	Elastic
$1.9 \mathrm{~m} / \mathrm{s}$	Inelastic

30.

A 0.25 kg cart travelling at $3.0 \mathrm{~m} / \mathrm{s}$ collides with and sticks to an identical stationary cart on a level track. (Ignore friction.)

To what height h do the combined carts travel up the hill?
31.

A $1.50 \times 10^{3} \mathrm{~kg}$ car travelling at $11.0 \mathrm{~m} / \mathrm{s}$ collides with a wall as shown.

$m=1.50 \times 10^{3} \mathrm{~kg}$

$m=1.50 \times 10^{3} \mathrm{~kg}$

The car rebounds off the wall with a speed of $1.3 \mathrm{~m} / \mathrm{s}$. If the collision lasts for 1.7 s , what force does the wall apply to the car during the collision?
A. $8.6 \times 10^{3} \mathrm{~N}$
B. $1.1 \times 10^{4} \mathrm{~N}$
C. $\quad 1.5 \times 10^{4} \mathrm{~N}$
D. $1.8 \times 10^{4} \mathrm{~N}$
32.

A 1500 kg car travelling at $25 \mathrm{~m} / \mathrm{s}$ collides with a 2500 kg van stopped at a traffic light. As a result of the collision the two vehicles become entangled. With what initial speed will the entangled mass move off, and is the collision elastic or inelastic?
A.

SPEED	TYPE OF COLLISION
$9.4 \mathrm{~m} / \mathrm{s}$	Elastic
$9.4 \mathrm{~m} / \mathrm{s}$	Inelastic
$15 \mathrm{~m} / \mathrm{s}$	Elastic
$15 \mathrm{~m} / \mathrm{s}$	Inelastic

33.

Three objects travel as shown.

What is the magnitude of the momentum of object R so that the combined masses remain stationary after they collide?
A. $19 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B. $30 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C. $36 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D. $48 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

Two steel pucks are moving as shown in the diagram. They collide inelastically.

Determine the speed and direction (angle θ) of the 1.3 kg puck before the collision. (7 marks)

0008
35.

A space vehicle made up of two parts is travelling at $230 \mathrm{~m} / \mathrm{s}$ as shown.

An explosion causes the 450 kg part to separate and travel with a final velocity of $280 \mathrm{~m} / \mathrm{s}$ as shown.

a) What was the momentum of the space vehicle before the explosion?
(2 marks)

What was the magnitude of the impulse on the 1200 kg part during the separation?
(3 marks)
c) Using principles of physics, explain what changes occur, if any, to the
i) momentum of the system as a result of the explosion.
(2 marks)
\qquad
\qquad
ii) kinctic energy of the system as a result of the explosion.
\qquad
\qquad
\qquad

0101
36.

A 1.0 kg cart moves to the right at $6.0 \mathrm{~m} / \mathrm{s}$ and strikes a stationary 2.0 kg cart. After the head-on collision, the 1.0 kg cart moves back to the left at $2.0 \mathrm{~m} / \mathrm{s}$ and the 2.0 kg cart moves to the right at $4.0 \mathrm{~m} / \mathrm{s}$. In this collision
A. only momentum is conserved.
B. only kinetic energy is conserved.
C. both momentum and kinetic energy are conserved.
D. neither momentum nor kinetic energy is conserved.
37.

A 12.0 kg shopping cart rolls due south at $1.50 \mathrm{~m} / \mathrm{s}$. After striking the bumper of a car, it travels at $0.80 \mathrm{~m} / \mathrm{s}, 30^{\circ} \mathrm{E}$ of S . What is the magnitude of the change in momentum sustained by the shopping cart?
A. $8.4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B. $\quad 9.7 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C. $11 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D. $27 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
38.

The graph below shows momentum, p, versus time, t, for a spacecraft while it is firing its rocket engines in space.

What does the slope of this graph represent?
A. the mass of the spacecraft
B. the velocity of the spacecraft
C. the net force on the spacecraft
D. the work done on the spacecraft
39.

A 360 kg roller coaster car travelling at $18 \mathrm{~m} / \mathrm{s}$ collides inelastically with a stationary 240 kg car on a section of horizontal track as shown in the diagram below.

To what maximum height, h, do the combined cars travel before rolling back down the hill? (Assume no friction.)
(7 marks)

8501
40. A chromium nucleus of mass 52 amu moving at $26 \mathrm{~m} / \mathrm{s}$ collides obliquely with an identical nucleus that is at rest, and the two nuclei move off at right angles to each other. The final speed of the incoming nucleus is $24 \mathrm{~m} / \mathrm{s}$. Determine the final speed of the target nucleus, and its direction of motion relative to that of the incoming nucleus.
41.

An object of mass 0.092 kg which is initially at rest attains a speed of $75 \mathrm{~m} / \mathrm{s}$ in 0.028 s . What average net force acted on the object during this time interval?
A. $1.2 \times 10^{2} \mathrm{~N}$
B. $2.5 \times 10^{2} \mathrm{~N}$
C. $2.8 \times 10^{2} \mathrm{~N}$
D. $4.9 \times 10^{2} \mathrm{~N}$

8606
42. A ball strikes a wall perpendicularly with an initial speed of $4.0 \mathrm{~m} / \mathrm{s}$, bouncing off the wall at $4.0 \mathrm{~m} / \mathrm{s}$ in the opposite direction. Which of the following statements correctly compares the ball's momentum and kinetic energy before and after the collision respectively?

	Momentum	Kinetic Energy
A.	different	different
B.	the same	the same
C.	different	the same
D.	the same	different

8606
43. A curling rock of mass 20.0 kg moving with a constant speed of $0.5 \mathrm{~m} / \mathrm{s}$ collides obliquely with a stationary rock of the same mass. Immediately after the collision the first rock moves off at $0.3 \mathrm{~m} / \mathrm{s}$. If the collision is perfectly elastic, what is the speed of the second rock immediately afterwards?
A. zero
B. $0.20 \mathrm{~m} / \mathrm{s}$
C. $0.30 \mathrm{~m} / \mathrm{s}$
D. $0.40 \mathrm{~m} / \mathrm{s}$

Scholarship Questions! Nasty, but really neat!

9401
44.

A 5.00 kg block, travelling along a horizontal, frictionless surface, collides head on with a spring. The block comes to a stop in 0.080 m . The stopping force exerted by the spring on the block increases from zero to 800 N as shown on the graph below. (Assume no energy loss due to heat.)

a) What was the speed of the block when it first touched the spring at point P?
(7 marks)
b) What is the magnitude of the impulse exerted by the spring in stopping the block?
(3 marks)
45.

A 2.00 kg puck is sliding across a level frictionless table at $3.00 \mathrm{~m} / \mathrm{s}$ towards the east. It collides with a second puck having a mass of 4.00 kg travelling at $2.50 \mathrm{~m} / \mathrm{s}$ due south. The pucks stick together on impact. What is the magnitude of the change in momentum of the 2.00 kg puck during this collision?
(10 marks)

9508
46.

A 300 kg projectile moving at $250 \mathrm{~m} / \mathrm{s}$ at 37° above the horizontal explodes into two parts. The larger, 220 kg part moves downward with a speed of $85 \mathrm{~m} / \mathrm{s}$ and hits the ground directly below the point of explosion. What maximum height above the point of explosion was reached by the smaller 80 kg part? (Assume g is a constant.)
(12 marks)
47.

A stationary life raft of mass 160 kg is carrying two survivors with masses of 55 kg and 72 kg , respectively. They dive off the raft at the same instant, the 55 kg person due East at $4.4 \mathrm{~m} / \mathrm{s}$ and the 72 kg person due North at $4.2 \mathrm{~m} / \mathrm{s}$. At what speed and in what direction does the raft start to move?
(10 marks)
48.

A 15 g bullet traveling parallel to an inclined ramp strikes a 2.74 kg block of wood and becomes imbedded in it. The impact drives the block a distance of 26 cm up the ramp. The ramp is inclined at 28°, and the coefficient of friction is 0.40 . What is the speed of the bullet just before impact?

9106
49. A 1.3 kg object is moving due East at $25 \mathrm{~m} / \mathrm{s}$ on a frictionless, horizontal surface. When the first object strikes a second, stationary 4.8 kg object, the 1.3 kg object rebounds at $9.0 \mathrm{~m} / \mathrm{s}$ in a direction 53 degrees north of west. What percentage of the original kinetic energy of the system is converted into other forms of energy during the collision?
(10 marks)

Answers:

1. a
2. $\triangle K E=24.1 \mathrm{~J}$
3. Conservation of momentum is a vector concept. Both gliders have same mass and same speed, so the magnitude of their momentum is the same, but their direction is opposite. One glider has a momentum of $+p$, one glider has a momentum of $-p$, so the total momentum before impact is zero. After the collision, the momentum is still zero, so momentum has been conserved, and no momentum has been lost.
4. b
5. a) i) $v=1.1 \times 10^{2} \mathrm{~m} / \mathrm{s}$
ii) $\Delta p=3.0 \times 10^{4} \mathrm{~N} \cdot \mathrm{~s}$
b) Impulse is a change in momentum. Since momentum is conserved, the momentum gained by the probe must equal the momentum lost by the capsule.
6. d
7. a
8. d
9. a
10. a
11. d
12. d
13. b
14. $v=2.1 \mathrm{~m} / \mathrm{s}, \theta=47^{\circ}$
15. a
16. $\mathrm{m}_{2}=4.19 \mathrm{~kg}$
17. d
18. d
19. a) $h=1.3 \mathrm{~m}$
b) The same height
c) Energy is a scalar, so the steepness of the slope is irrelevant. All of the kinetic energy will be transferred to potential energy in both cases, and since both cases have the same initial kinetic energy, the final potential energy will also be the same, and so will the final height.
20. c
21. b
22. $v=56 \mathrm{~m} / \mathrm{s} @ 42^{\circ} \mathrm{N}$ of E
23. b
24. b
25. $\Delta K E=F \bullet d$ and as d increases, F decreases.
$\Delta p=F \Delta t$, and as Δt increases, F decreases.
Both the increase in time of impact and increase in distance of impact lower the force transferred to the occupants.
26. b
27. b
28. d
29. b
30. $\mathrm{h}=0.11 \mathrm{~m}$
31. b
32. b
33. c
34. $v=5.5 \mathrm{~m} / \mathrm{s}, \theta=32^{\circ}$
35. a) $3.8 \times 10^{5} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b) $\Delta p=2.3 \times 10^{4} \mathrm{~N} \cdot \mathrm{~s}$
c)i) in an explosion, momentum is conserved, so no change
ii) the explosion adds kinetic energy to the system, so the system will gain kinetic energy
36. c
37. c
38. c
39. $\mathrm{h}=6.0 \mathrm{~m}$
40. $v=10 \mathrm{~m} / \mathrm{s} @ 67^{\circ} \mathrm{S}$ of E
41. $\mathrm{F}=246 \mathrm{~N}$
42. c
43. d
44. a) $\mathrm{v}=3.6 \mathrm{~m} / \mathrm{s}$ b) $18 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
45. $\Delta p=5.20 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
46. $\mathrm{d}=3.25 \times 10^{4} \mathrm{~m}$
47. $v=2.4 \mathrm{~m} / \mathrm{s} @ 51^{\circ} \mathrm{S}$ of W
48. $v=3.8 \times 10^{2} \mathrm{~m} / \mathrm{s}$
49. 44.8%
