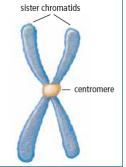
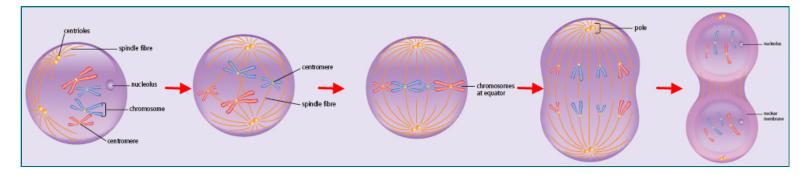

5.1 The Cell Cycle and Mitosis

Stages of the Cell Cycle

- Due to the loss and death of cells, the body must replace them. A good example of this is human skin cells each day millions are shed.
- The life of a cell is divided into three stages known as the cell cycle:
 - **Interphase**: cell carries out normal functions.
 - **Mitosis**: nucleus contents duplicated and divide into two equal parts.
 - **Cytokinesis**: separation of two nuclei and cell contents into two daughter cells.

Interphase


- Interphase, the longest cell cycle stage, is when a cell performs normal functions and grows. For example, an intestinal lining cell absorbing nutrients.
- In late interphase, DNA copies itself in the process of replication. Replication involves several steps:
 - The DNA molecule unwinds with the help of an enzyme.
 - New bases pair with the bases on the original DNA.
 - Two new identical DNA molecules are produced.


• At the end of interphase, the cell continues to grow and make proteins in preparation for mitosis and cytokinesis.

Mitosis

- Mitosis is the shortest stage of the cell cycle where the nuclear contents divide, and two daughter nuclei are formed. It occurs in 4 stages: Prophase, Metaphase, Anaphase and Telophase.
- As the nucleus prepares to divide, replicated DNA in interphase joins to form sister chromatids, joined by a centromere.

- Early Prophase nucleolus disappears and spindle fibres form
- Late Prophase (Prometaphase) spindle fibres attach to centromeres of chromosomes
- Metaphase chromosomes align on equator of cell
- Anaphase spindle fibres pull sister chromatids to opposite poles of cell
- **Telophase** in this final stage, spindle fibres disappear and a nuclear membrane forms around each separated set of chromosomes.

Cytokinesis

Cytokinesis is the separation of the nuclei into two daughter cells

Checkpoints in the Cell Cycle

- Checkpoints in the cell cycle will prevent division if:
 - · If the cell is short of nutrients
 - If the DNA within the nucleus has not been replicated
 - If the DNA is damaged
- Mutations in genes involving checkpoints can result in an outof-control cell cycle. The result can be uncontrolled cell division: cancer.
 - Cancer cells have large, abnormal nuclei
 - Cancer cells are not specialized, so they serve no function
 - Cancer cells attract blood vessels and grow into tumours.
 - Cells from tumours can break away to other areas of the body

5.2 Asexual Reproduction

- A **clone** is an identical genetic copy of its parent
- Many organisms naturally form clones via asexual reproduction
- Cloning is also used in agriculture and research to copy desired organisms, tissues and genes

Types of Asexual Reproduction

- Binary fission: single cell organisms splitting into identical copies
- Budding: areas of multicellular organisms undergo repeated mitosis to form an identical organism. Buds sometimes detach to form a separate organism
- Fragmentation: part of an organism breaks off due to injury, and the part grows into a clone of the parent
- Vegetative reproduction: special cells in plants that develop into structures that form new plants identical to the parent
- Spore formation: some bacteria, micro-organisms and fungi can form spores - single cells that can grow into a whole new organism

Advantages and Disadvantages of Asexual Reproduction

Advantages	Disadvantages
 Large numbers of offspring are reproduced very quickly from only one parent when conditions are favourable. 	 Offspring are genetic clones. A negative mutation can make asexually produced organisms susceptible to disease and can destroy large numbers of offspring.
 Large colonies can form that can out-compete other organisms for nutrients and water. 	 Some methods of asexual reproduction produce offspring that are close together and compete for food and space.
 Large numbers of organisms mean that species may survive when conditions or the number of predators change. 	 Unfavourable conditions such as extreme temperatures can wipe out entire colonies.
 Energy is not required to find a mate. 	

Human-assisted Cloning

- Humans use all the asexual cloning methods in order to produce desired results with organisms. This is done in several ways:
- **Reproductive cloning**: purpose is to produce a genetic duplicate of an existing or dead organism. Steps involved:
 - 1. Remove nucleus from an egg cell
 - 2.A mammary gland cell is removed from an adult female
 - 3. Electricity fuses mammary and egg cell
 - 4. Fused cell begins dividing
 - 5. Dividing embryo is inserted into surrogate mother
- Therapeutic cloning purpose is to correct health problems
 - Very important to therapeutic cloning are stem cells cells that can become different types of cells
 - Stem cells can be used to replace cells damaged from injuries or disease
 - Diabetes, spinal injuries, Parkinson's disease are only a few that can benefit from stem cell therapy
 - Controversial because the best stem cells are from embryos which are destroyed when harvesting cells