BUILD AN ATOM simulation

PART I: ATOMS

Build an Atom simulation (http://phet.colorado.edu/en/simulation/build-an-atom)

1.	Explore the Build an Atom simulation with your group. As you explore, talk about what you found.
2.	(a) List two things your group observed in the simulation.
	(b) What particle(s) are found in the center of the atom?
3.	Play until you discover which particle(s) determine(s) the name of the element you build. What did you discover?
4.	What is the name of the following atoms? An atom with 3 protons: An atom with 2 protons: An atom with 4 protons:
5.	What is the name of the following atoms? An atom with 3 protons and two neutrons: An atom with 3 protons and four neturons: What can you conclude about the effect of adding neutrons to an atom?
6.	Play with the simulation to discover which particles affect the charge of an atom or ion. Fill in the blanks below to show your results:
a.	Neutral atoms have <u>the same number of</u> protons and electrons.
b.	Positive ions have protons than electrons.
c.	Negative ions have protons than electrons.
7.	Develop a relationship (in the form of a single sentence or equation) that can <u>predict the charge based on the number and types of particle</u> .
8.	Play with the simulation to discover <u>what affects the mass number</u> of your atom or ion. What is a rule for determining the mass number of an atom or ion?
9.	Practice applying your understanding by playing 1st and 2nd levels on the game screen.

BUILD AN ATOM SIMULATION

PART II: SYMBOLS

- 1. Using the Symbol readout box, figure out which particles affect each component of the atomic symbol.
 - a) In the atomic symbol below, label each letter (a, b, c, and d) with:
 - the particle(s) used to determine the letter, and
 - how the value of each letter is determined.

$$\frac{d}{c}a^b$$

- 2. Create a definition (using a complete sentence) for each of these items based on your labels from the atomic symbol above.
 - a) Element Symbol
 - b) Charge
 - c) Atomic Number
 - d) Mass Number
- 3. Practice applying your understanding by playing the 3rd and 4th game levels. Play until you can get all the questions correct on the 4th level.
- 4. In addition to atomic symbol, we can represent atoms by name and mass number.
- a) Complete the table below:

Symbol	Name
$^{12}_{6}C^{+1}$	Carbon-12
$^{18}_{9}F$	
¹¹ ₅ B	

b) Each representation (Symbol and Name) in the table above provides information about the atom. Describe the similarities and differences between the *Symbol* and *Name* representations.

The atom:

https://www.youtube.com/watch?v=FSyAehMdpyI&list=PL8dPuuaLjXtPHzzYuWy6fYEaX9mQQ8oGr&index=1

BUILD AN ATOM SIMULATION

PART III: ISOTOPES

1. Play with the simulation to determin	1.	Play	with tl	he sim	ulation	to	detern	nine
---	----	------	---------	--------	---------	----	--------	------

- a) Which particles affect the stability of the nucleus?
- b) Which particles do not affect the stability of the nucleus?
- 2. What are the names of the stable forms of oxygen?
- a) Oxygen-16
- b) Oxygen-____
- c) Oxygen-____
- d) List all of the things that are the same about these atoms (ignore the electrons).
- e) List all of the things that *are different* about these atoms (ignore the electrons).
- 3. The atoms in the previous question are **isotopes** of each other. Based on this information, list the requirements for two atoms to be isotopes of each other.
- 4. Test your understanding of isotopes by examining the relationships between the pairs of atoms listed below:

Atom 1	Atom 2	Relationship between atom 1 and atom 2
$^{12}_{6}C$	$^{13}_{6}C$	☐ Isotopes☐ Same Atom, Not Isotopes of Each Other☐ Different Element
Carbon-12	$^{12}_{6}C$	☐ Isotopes ☐ Same Atom, Not Isotopes of Each Other ☐ Different Element
Argon-40	Argon-41	☐ Isotopes☐ Same Atom, Not Isotopes of Each Other☐ Different Element
¹¹ ₅ B	Boron-10	☐ Isotopes☐ Same Atom, Not Isotopes of Each Other☐ Different Element
An atom with 13 protons and 13 neutrons	An atom with 14 protons and 13 neutrons	☐ Isotopes☐ Same Atom, Not Isotopes of Each Other☐ Different Element

5.	The periodic table has a great deal of information about every atom.	Using your periodic table,
	answer the following questions:	

a)	What is the atomic number of chlorine	CI)?
----	---------------------------------------	----	----

- b) What is the atomic number of tungsten (W)? _____
- c) How many protons are there in any Cl atom?_____
- d) How many protons are there in any Te atom? _____
- e) Can you tell from the periodic table exactly how many neutrons are in an atom?

6. Complete the following table:

Name	Symbol	Atomic number	Mass Number	Number of neutrons	Number of Electrons	Charge
hydrogen-2	² H	1	2	1	1	0
	³ H					
sodium-22	²² Na ⁺				10	
		12	24		12	
		12	25		13	
	⁴⁶ Ti ⁻²					
	¹⁰⁷ Ag					
	¹⁹ F ⁻¹					
carbon-12					6	
carbon-13					6	
carbon-14					6	
carbon-12					7	
carbon-12					5	
	⁴ He					
		8		8	10	
argon-40		18			18	
	⁷⁰ Ga					
	⁷⁰ Ga ⁺³					
		4	9		2	
		7		8	8	

7. To test your knowledge of isotopes, draw arrows between all pairs of atoms in the table above that are isotopes of each other.