Review for the Midterm
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2. Find the equations of the asymptotes for y = ;2_4.
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3. a) State the definition of the derivative of a function f/(x).
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4. a) State the definition of continuity of a function f at a number a.
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Review for the Midterm

5. Suppose the position of an object moving horizontally after ¢seconds is given by

s=f(t)=2t3-21t2+60t, 0<t<6

where s is measured in metres, with s > 0 corresponding to positions right of the origin.

a) Find the velocity function. When is the object stationary, moving to the right, and moving to the left?
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b) Determine the velocity and acceleration of the object at ¢t = 1. '| «&ﬁ 0< 'é ¢ 5

vt = 24mle fr'
&t = 2t -41 all)= =30 ©

c) Determine the acceleration of the object when its velocity is zero.
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d) On what intervals is the object speedmg up? On what intervals is it slowing down?
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6. Determine an equation of the tan“g‘gnz I}n‘e{to the cufve f“ﬁ’ 1 at the point (-1, 1).
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7. Find a curve with thz fol[owmg pr;)pemes .
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b) Its graph passes through the point (0,1) and has a horizontal tangent at this point.
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8. Consider the curve x3 + yz = 4 in the first quadrant. Show that the length of segment XY of a tangent line to the
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10. A race car is speeding around a race-track and comes to a particularly dangerous curve in
the shape y? = 2 + 5z%. The diagram below indicates the direction the car is traveling
along the curve.

[2] (a) Find the derivative of y with respect to .
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[3] (b) If the car skids off at the point (—4,4) and continues in a straight path find the

equation of the line the car will travel in.
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[1] (c) If a tree is located at the point (—1,6.5) with a lake to the left and cows to the
right, will the car hit the lake, the tree or the cows?
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