Blk:

Date: _____

PreCalculus 12

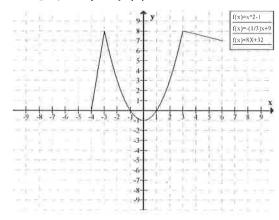
Final Exam Review

CH 1.1-1.3: OPERATIONS WITH FUNCTIONS

- 1) If $f(x) = (3x 1)^2$ and $g(x) = (x + 2)^2$, determine f(x) + g(x), f(x) g(x) and $f(x) \div g(x)$.
- 2) If f(x) = 3x + 2 and g(x) = 2x 5, what is g(f(3))?
- 3) If $f(x) = x^2 4x$ and g(x) = 3x 1, what is f(g(x))?
- 4) If g(x) = 2 5x, what is $g(g(-\frac{2}{3}))$?
- 5) If $f(x) = \sqrt{6x}$ and g(x) = 2x + 3 what is f(g(x))?
- 6) If f(x) = x 2 and $g(x) = \sqrt{x+1}$, what is the domain of f(g(x))?
- 7) The area of a circle, A, in terms of its radius, r, is given by $A(r) = \pi r^2$. The radius in terms of its circumference, C if $r(C) = \frac{C}{2\pi}$. What is the function that expresses the area of the circle in terms of its circumference?

CH 1.4-1.6: TRANSFORMATIONS OF FUNCTIONS

1) Which equation represents the graph of $y = 2^x$ after it is reflected in the x-axis.


a) $y = 2^{-x}$

b) $v = -2^x$

c) $y = \log_2 x$

d) $y = -\log_2 x$

- 2) How is the graph of y = f(4x) related to the graph of y = f(x)?
 - a) y = f(x) has been compressed vertically by a factor of $\frac{1}{4}$.
 - b) y = f(x) has been compressed horizontally by a factor of $\frac{1}{4}$.
 - c) y = f(x) has been expanded vertically by a factor of 4.
 - d) y = f(x) has been expanded horizontally by a factor of 4.
- 3) If the maximum value of the function y = f(x) is 6, determine the maximum value of $y = \frac{1}{3}f\left(\frac{1}{2}x\right)$.
- 4) If the point (-2,-5) is on the graph of y = f(x), which point must be on the graph of y = f(1-x) + 3
- 5) The graph of y = f(x) is shown below.

- a) On the grid provided, sketch the graph of y = 0.5 f(-x + 1) 2.
- b) On the grid provided, sketch the graph of y = -f(2x-2) + 1
- 6) If the graph of 2x + 3y = 5 is translated 4 units up, determine an equation of the new graph.
- 7) If the point (2, -8) is on the graph of y = f(x 3) + 4, what point must be on the graph of y = f(x)?
- 8) Given $f(x) = \frac{x}{3x-1}$, determine $f^{-1}(x)$, the inverse of f(x).

- 9) Given $f(x) = \frac{2x}{1-x}$, determine $f^{-1}(x)$, the inverse of f(x).
- 10) The zeroes of a function y = f(x) are -3, 0, 2. Determine the zeroes of the function y = f(2 x).
- 11) If (3, -4) is a point on the graph of y = f(x), what must be a point on the graph of

$$y = \frac{1}{2} f(1 - x) - 2 ?$$

- 12) If (m, n) is a point on the graph of y = f(x), determine a point on the graph y = -f(4x 2) + 1.
- 13) If the graph $x^2 + y^2 = 1$ is horizontally expanded by a factor of 3 and vertically compressed by a factor of $\frac{1}{2}$, determine an equation for the new graph.

CH 3: RADICAL FUNCTIONS AND EQUATIONS

1) Solve by algebra and graphing:

a)
$$\sqrt{x-2} = 2$$

b)
$$\sqrt{5x - 6} = x$$

a)
$$\sqrt{x-2} = 2$$
 b) $\sqrt{5x-6} = x$ c) $\sqrt{13-x} - x + 1 = 0$

d)
$$\sqrt[3]{x+6} = 2$$

- 2) Determine the domain, range, the x-intercept, the y-intercept and graph the function $y = -2\sqrt{4-2x} + 3$.
- 3) Determine the domain, range, the x-intercept, the y-intercept and graph the function $y=-2\sqrt{x^2-4}+1$.

CH 2: POLYNOMIAL FUNCTIONS

- 1) What is the greatest number of roots that $x^4 + 9x^3 3 = 2x^5 11x^2$ could have?
- 2) Which cubic function has zeros of -3, -3, 2?

a)
$$y = -8(x-3)^2(x+2)$$
 b) $y = 2(x-3)^2(x+2)^2$ c) $y = 4(x+3)(x-2)$

b)
$$y = 2(x-3)^2(x+2)^2$$

c)
$$y = 4(x+3)(x-2)$$

d)
$$y = -5(x+3)(x-2)^2$$
 e) $y = (x+3)^2(x-2)$

e)
$$y = (x+3)^2(x-2)$$

3) Which quartic function has zeros -5, -2, 2, 3?

a)
$$y = 4(x+5)(x+2)(x-2)(x-3)$$

b)
$$y = -2(x+5)(x-2)(x-3)$$

c)
$$y = -7(x-5)(x-2)(x-2)(x-3)$$

d)
$$y = 3(x-5)(x-2)(x+2)(x+3)$$

e)
$$y = x^4 - 2x^3 + 5x^2 - 12x + 16$$

- 4) Which of the following statements is false?
 - a) A quartic function could have two pairs of equal real zeros.
 - b) A cubic function could have just one distinct real zero
 - c) A quintic function must have at least one real zero
 - d) A quadratic function could have a double zero
 - e) A polynomial function must have at least one real zero

- 5) Graph: $y = 2x(x-3)^2(x+2)^3$.
- 6) Solve $8x^3 + 18x^2 56x = 0$
- 7) What is the remainder when $x^3 3x^2 + 7x + 5$ is divided by x + 4?
- 8) What is the value of k if $x^3 + kx^2 + 7x + 12$ is divided by x + 2, and gives a remainder of 2?
- 9) What is the value of k if $x^4 + kx^3 + x^2 6x + 3$ is divided by x + 3, and gives a remainder of -24?
- 10) When the polynomial $3x^2 bx + 20$ is divided by x 4, the remainder is -12. What is the remainder when the polynomial is divided by x + 2?
- 11) The polynomial $ax^3 + bx^2 4x + 7$ when divided by x + 5 has a remainder of 2 and when divided by x + 1 has a remainder of 30. What is the value of ?
- 12) What is the value of f(2) if x 2 is a factor of f(x)?
- 13) Which values of x should be chosen to test for factors of $2x^4 + 7x^3 4x^2 + 2x 12$?
- 14) Without dividing, what is the remainder for $(6x^2 + x 4) \div (3x 4)$?
- 15) Solve by factoring. $20x^3 + 37x^2 63x + 18 = 0$
- 16) Solve by factoring. $4x^3 + 14x^2 + 8x + 1 = 0$
- 17) Without dividing, what is the remainder for $(8x^2 + 2x 5) \div (2x 1)$?
- 18) Solve the inequality (a-2)(a+4) > 0
- 19) Solve the inequality x(x-3) > 0
- 20) Which graph represents the solution for $x^2 4x 12 \ge 0$?
- 21) Solve the inequality: (x + 4)(x 2)(x 6) > 0
- 22) Solve the inequality: $x^3 4x^2 11x + 30 \le 0$

CH 4: EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- 1) $27^{x}(9^{2x-1})=3^{x+4}$
- 2) The half-life of sodium-24 is 14.9 h. A hospital buys a 40-mg sample of sodium-24.
 - a) How many grams to the nearest tenth, of sodium-24 will remain after 48h?
 - b) After how long will only 2.5mg remain?
- 3) A bacterium is quadrupling every seven days.
 - a) Write an exponential function the models the growth of the number of bacteria.
 - b) How many times as great will the number of bacteria be in three weeks as the number now?
 - c) How long will it take the number of bacteria to double?
 - d) How long ago was there only 25% of the current number of bacteria?
 - e) After how long will a single bacterium grow to 8²⁴ bacteria?
- 4) Evaluate without a calculator: $\log_{\sqrt{7}} 7^3$.
- 5) As an iceberg melts during the summer, it loses 3% of its mass every 5 days. This iceberg reduces to 40% of its original mass after *t* days. Write an equation which could be used to determine the value of *t*?
- 6) Solve: $\log_2(\log_9 x) = -1$
- 7) Solve: $5^{x+1} = 2(3^{2x})$
- 8) Change to logarithmic form $a^3 = b$.
- 9) Give the domain of $f(x) = \log_7(-2x + 6) + 12$
- 10) Express $\log_5 30$ using logarithms in base 4.
- 11) Expand: $log \frac{x}{2y^3}$.
- 12) Solve: $\left(\frac{1}{9}\right)^x = 27^{2-x}$
- 13) Solve: $\log_2 x + \log_2 (x 1) = 3$

- 14) Determine an exponential function in the form $y = 3^{x-h} + k$ with a y-intercept 5 and asymptote y = -4.
- 15) The population of a nest of ants can multiply threefold (triple) in 8 weeks. If the population is now 12000, how many weeks will it take for the population to reach 300,000 ants?

(Solve algebraically using logarithms. Answer accurate to at least 2 decimal places.)

- 16) Express as a single logarithm: $\log m \log n 3 \log k$
- 17) Determine the domain of the function $y = \log_{x-1}(5-x)$.
- 18) Simplify: $9 \log_{27} x 4 \log_9 x$
 - a) $\log_3 x$

b) $\log_9 x$

c) $\log_{27} x$

- d) $\frac{3}{4}\log_3 x$
- 19) A particular type of bacteria multiplies 5-fold every 30 minutes. Initially there are 100 bacteria. Determine an expression for the number of bacteria after *k* minutes.
- 20) Given $f(x) = 3(2^{x-2}) + 5$, determine $f^{-1}(x)$, the inverse of f(x).
- 21) Solve algebraically: $2 \log_3(x + 4) \log_3(-x) = 2$
- 22) Change $\log_{2a} p = t$ to exponential form.
- 23) Determine an equivalent expression for $\log a 2 \log b 3 \log c$.
- 24) Solve: $\log_5(3x) \log_5(x-3) = 2$
- 25) Solve: $9^{x+2} = (3^{4x-3})(3^5)$
- 26) In chemistry, the pH-scale measures the acidity (0-7) or alkalinity (7-14) of a solution. It is a logarithmic scale in base 10. Thus a pH of 5 is 10 times more acidic than a pH of 6. Solution A has a pH of 5.7. Solution B is 1260 times more acidic than Solution A. Find the pH of solution B.
- 27) A radioactive substance has a half-life of 17 d. How long will it take for 300 g of this substance to decay to 95 g? (Solve algebraically using logarithms. Answer accurate to at least 2 decimal places.)
- 28) Solve for x: $ab^x = c$
- 29) Solve algebraically using logarithms: $2^x = 3(5^{x+1})$ (Answer accurate to at least 2 decimal places)
- 30) Solve for x: $\log(3 x) + \log(3 + x) = \log 5$
- 31) Solve: $\log_2 8 + \log_3 \frac{1}{3} = \log_4 x$
- 32) Solve the following: $\log_2(\log_4(\log_5 x)) = -1$
- 33) Solve algebraically: $2\log_4 x \log_4(x+3) = 1$
- 34) Write as a single logarithm: $3 + \frac{1}{2}\log_2 x 3\log_2 y$
- 35) If $\log_4 x = a$, determine $\log_{16} x$ in terms of a.
- 36) If $\log 2 = a$, $\log 3 = b$, determine an expression for $\log 2400$
- 37) Simplify: $a^{\log_a 8 + \log_a 2}$
- 38) Determine the value of $\log_n ab^2$ if $\log_n a = 5$ and $\log_n b = 3$.

CH 5 – 6: TRIGONOMETRY

1) Determine the general solution algebraically. (Solve over the set of real numbers)

 $3\cos^2 x - 8\cos x + 4 = 0$ (Answer accurate to at least 2 decimal places.)

- 2) Prove the identity: $\frac{\tan x(\cos x + \cot x)}{\sec x + \tan x} = \frac{\sin x \sin 2x}{2 2\cos^2 x}$
- 3) A circle has a radius of 20cm. Determine the length of the arc subtended by a central angle of 135°.
- 4) Determine the exact value: a) $\sec \frac{4\pi}{3}$

- b) $\tan \frac{7\pi}{6}$
- c) $\sin(-\frac{3\pi}{4})$.

5) Solve: a) $\csc x = 2, 0 \le x < 2\pi$

b) $\sin 2x = \frac{1}{\sqrt{2}}$, where $0 \le x < 2\pi$.

- 6) Solve algebraically, giving exact values, where $0 \le x < 2\pi$. $\sin x = \cos 2x$
- 7) Solve algebraically, giving exact values, where $-\frac{\pi}{2} < x < \frac{\pi}{2}$: $2\tan x \cos x \sqrt{3}\tan x = 0$.
- 8) Solve algebraically, giving exact values: $\sin \frac{1}{3}x = \frac{\sqrt{3}}{2}$
 - a) Where $0 \le x < 2\pi$

- b) Over the set of real numbers:
- 9) The two smallest positive solutions of $\sin 3x = 0.7$ are x = 0.26 and x = 0.79. Determine the general solution for $\sin 3x = 0.7$.
- 10) Solve algebraically $6sin^2x = \sin x + 2$ over the set of real numbers. (Give exact value solutions where possible, otherwise answer accurate to two decimal places.)
- 11) Solve algebraically $\sin 2x 2\cos^2 x = 0$ over the set of real numbers. (Give exact value solutions)
- 12) Determine the restriction(s) for the expression $\frac{\tan \theta}{2\cos \theta 1}$
- 13) Determine an expression equivalent to $tan^2\theta \csc\theta + \frac{1}{\sin\theta}$
- 14) Simplify: $3\cos 2x \cos x + 3\sin 2x \sin x$.
- 15) Simplify: $\frac{6 \sin \theta}{\sin 2\theta}$.
- 16) Prove the identity: $\frac{\tan x + \sin x}{1 + \cos x} = \frac{1}{\csc 2x} \frac{\tan x}{\sec 2x}.$
- 17) The terminal arm of angle θ in standard position passes through the point (-2, 5). Determine the value of $\sec \theta$.
- 18) Determine the amplitude, period and the max and min values of $y=-3\cos(2x-\frac{\pi}{3})+2$. Then, graph the function and label five key points in one period.

CH 7: COMBINATORICS

- 1) When you play lotto 5-30, you must choose 5 different integers from 1 to 30. How many combinations are possible?
- 2) Determine the 4th term of $(3x 2)^6$
- 3) Determine the number of different arrangements of all the letters in APPLEPIE.
- 4) Assume a car license plate consists of 7 characters. The first 3 characters can be any of the letters from A to F, but no letter can be repeated. The next 3 characters can be any of the digits from 1 to 9, but no digit can be repeated. The last character can be any of the letters X,Y or Z. An example of this format is: BFA648Y. How many license plates are possible?
- 5) Suppose you play a game of cards in which only three cards are dealt from a standard 52-card deck. How many ways are there to obtain one pair? (2 cards of the same rank and 1 card of a different rank.) An example of a hand that contains one pair is 2 jacks and 1 five.
- 6) A soccer coach must choose 3 out of 10 players to kick tie-breaking penalty shots. Assuming the coach must designate the order of the 3 players, determine the number of different arrangements she has available.
- 7) Determine the 4th term in the expansion of $(x 2y)^5$.
- 8) Solve algebraically: $\frac{(n-1)!}{(n-3)!} = 30$
- 9) Express $_{33}C_5$ using factorial notation.
- 10) Determine the middle term in the expansion of $(x y)^{10}$.
- 11) A class has 30 students.
 - a) How many ways can a committee of 3 people be selected from the class?
 - b) How many ways can an executive committee consisting of 3 people (president, vice-president, secretary) be selected from the class?

- c) If there are 10 boys and 20 girls in the class, how many ways can a committee of 3 people be selected from the class if the committee must contain 1 boy and 2 girls.
- 12) How many different pasta meals can be made from 4 choices of pasta and 2 choices of sauces, if only one pasta and one sauce is selected for each meal?
- 13) A man has 7 different pets and wishes to photograph them 3 at a time arranged in a line. How many different arrangements are possible?
- 14) Suppose you play a game of cards in which only four cards are dealt from a standard deck of 52 cards. How many ways are there to obtain three of a kind? (3 cards of the same rank and 1 card of a different rank, for example 3 tens and 1 queen.)
- 15) How many permutations are there using all of the letters in the word PEPPER?
- 16) In a particular city, all of the streets run continuously north-south or east-west. The mayor lives 4 blocks east and 5 blocks north of city hall. Determine the number of different routes, 9 blocks in length that the mayor can take to get to city hall.
- 17) In the expansion of $(x + y)^{10}$, determine the coefficient of the term containing x^8y^2 .
- 18) In a standard deck of 52 cards, how many different 4-card hands is there that contain at most one heart?
- 19) In a library, 4 different English books, 2 different Chemistry books and 3 different Mathematics books are arranged on a shelf. Determine the number of different arrangements if the books on each subject must be kept together.

Operations with Functions

$$\begin{array}{ll}
D & f(x) + g(x) = (3x - 1)^{2} + (x + 2)^{2} = 10x^{2} - 2x + 5 \\
f(x) - g(x) = 8x^{2} - 10x - 3 \\
f(x) \div g(x) = \frac{(3x - 1)^{2}}{(x + 2)^{2}}, x \neq -2
\end{array}$$

(3)
$$f(g(x)) = (3x-1)^2 - 4(3x-1) = 9x^2 - 18x + 5$$

$$(4) g(g(-\frac{2}{3})) = g(2+\frac{10}{3}) = g(\frac{16}{3}) = 2-5 \cdot \frac{16}{3} = \frac{6-80}{3} = \frac{-14}{3}$$

$$A(r) = \pi r^2$$

$$r(c) = \frac{c}{2\pi}$$

$$A(c) = \pi \left(\frac{c}{2\pi}\right)^2 = \pi \cdot \frac{c^2}{4\pi^2} = \frac{c^2}{4\pi}$$

CH.1.4-1.6 Transformations of Functions

$$(-2,5) \rightarrow (2,-5) \rightarrow (3,-5) \rightarrow (3,-2)$$

(5)
$$y = \frac{1}{2} f[-(x-1)] - 2$$
 b) $y = -f[2(x-1)] + 1$

(6)
$$y - y - 4$$
 $2x + 3(y - 4) = 5$

(8)
$$\dot{x} = \frac{\dot{y}}{3y-1}$$
 $x(3y-1) = \dot{y}$
 $y = \frac{\dot{x}}{3x-1}$
 $y = \frac{\dot{x}}{3x-1}$
 $y = \frac{\dot{x}}{3x-1}$
 $y = \frac{\dot{x}}{3x-1}$

(9)
$$y = \frac{2x}{1-x}$$
 $x = xy + 2y$
 $x = y(x+2)$
 $x = \frac{2y}{1-y}$
 $y = \frac{x}{x+2}$
 $x - xy = 2y$
 $y = \frac{x}{x+2}$

(i)
$$y = f(2-x) = f[-(x-2)]$$

 $(-3,0) \rightarrow (3,0) \rightarrow (5,0)$
 $(0,0) \rightarrow (0,0) \rightarrow (2,0)$
 $(2,0) \rightarrow (-2,0) \rightarrow (0,0)$

(1)
$$y = \frac{1}{2} f(-(x+1)) - 2$$

 $(3,-4) \rightarrow (3,-2) \rightarrow (-3,-2) \rightarrow (-2,-2) \rightarrow (-2,-4)$
(2) $(m,n) \rightarrow (m,-n) \rightarrow (\frac{m}{4},-n) \rightarrow (\frac{m}{4}+\frac{1}{2},-n) \rightarrow (\frac{2+m}{4})-n+1$

(13)
$$x \rightarrow \frac{1}{3}x$$

 $y \rightarrow 2y$

$$\left(\frac{x}{3}\right)^2 + \left(2y\right)^2 = 1$$

CH.3 Radical Functions and Equations

① a)
$$\sqrt{X-2} = 2$$
 $5x > 2$
 $X-2 = 4$
 $X=6$

Check
$$\sqrt{6-2} = 2$$

 $2 = 2 \vee$

$$5x-6=x^{2}$$

 $x^{2}-5x+6=0$
 $(x-2)(x-3)=0$
 $x=2$ or $x=3$

Check:
$$\sqrt{5.2-6} = 2$$

 $2 = 2 \vee \sqrt{15-6} = 3$

c)
$$\sqrt{13-x} = x-1$$

d) \$\int 16=2

1+6= 8

X=2

5= {2}

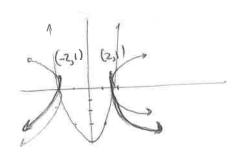
Chief V

$$13-X=X^2-2X+1$$

$$\chi^2 - x - 12 = 0$$

$$(x-4)(x+3)=0$$

 $k=4 \text{ or } x=-3$
Checks $\sqrt{13-4}=4-1$
 $3=3 \text{ v}$
 $\sqrt{13+3}=-3-1 \text{ X}$


(2)
$$y = -2\sqrt{4-2x} + 3$$
 $4-2x \neq 0$
 $4 \Rightarrow 2x$
 $d = \{x \mid x \leq 2, x \in \mathbb{R}\}$
 $r = \{y \mid y \leq 3, y \in \mathbb{R}\}$

$$x=0$$
 $y=-2\cdot 2+3=-1$ $(0,-1)$

$$y=0$$
 $-3=-2\sqrt{4-2}$
 $(\frac{3}{2})=4-2x$

$$4-\frac{9}{4}=2x \qquad \left(\frac{7}{8},0\right)$$

$$2x=\frac{7}{4}$$

Ch. 2 Polynomial Functions

- 0.5
- 2 2
- 3 a
- (A)e
- (5) $y = -\frac{1}{2}(x-6)(x-2)(x+3)$
- (6) -4,0, $\frac{7}{4}$
- 7 -135
 - (8) 3
- 9 455
- (18) ac-4 or a>2
- (19) XLO Or X73
- (20)
- (21) -4< x < 2 or x > 6
- (22) $\times \leq -3$ or $2 \leq \times \leq 5$

- (10) 72
- (11) 24
- (12) 0
- (13) ± 1, ±2, ±3, ±4, ±6, ±12 , ± ½ , ±3 , 5
- (14) 8
- (5) $-3, \frac{2}{5}, \frac{3}{4}$
- $(16) \frac{1}{2} + \frac{-3 \pm \sqrt{7}}{2}$
 - (F) -2

CH. 4 3x 2(2x-1) x+43.3 = 3

> 3x + 4x - 2 = X + 46x =6 [X=1

2 A=Aox =

(2) $A = A_0 \times \frac{48}{14.9} = 4.39$

b) $2.5 = 40(\frac{1}{2})^{\frac{*}{14.9}}$ t= 59.6h

3 a) A(t)=A(4)

6) 64 times c/3,5 days d) 7 days ago e) 252 days

(5) 40 = 100 (0,94) to

 $6x = 9^{\frac{1}{2}} = 3$

(7) (x+1)log5=log2 + 2x log3 $T = \frac{\log 2 - \log 5}{\log 5 - 2\log 3}$

8 log b = 3

10gx - log2 - 3/ogy

-2x = 6 - 3x

(3) x(x-1)=8 $x^2 - x - 8 = 0$

(14) y=3 x-h

 $15) A = 12000 (3)^{\frac{1}{8}}$ 300 000 = 12000 . 3 8 12000 . 3 t=23,4

log m nk3

y= 3 x+2 -4

(17) 5-x>0 -> [1<x<5, x+2] x-1>0 -> [1<x<5, x+2]

(9) a

 $A = 100(5)^{\frac{1}{30}}$

20) X = 3,2 45 X-5= 242 y-2 = lug (x-5) y=f(x1= log_2(x5)+2

x2+8x+16+9x=0

(22) (2a) = p

(23) ly a 12c3

X2+17 X+16=0 (X+16)(X+11=0 x = -16, [x = -1]

3x = 25x-75

2x+4 = 4x-3+5 $X = \frac{2}{2} = 1$

$$\begin{array}{ccc}
28 & b^{x} = \frac{c}{a} \\
x = \log_{b} \frac{c}{a}
\end{array}$$

(29)
$$x \log 2 = \log 3 + (x+1) \log 5$$

 $x = \frac{\log 3 + \log 5}{\log 2 - \log 5}$

(31)
$$3 + (-1) = \log_4 x$$

 $2 = \log_4 x$
 $x = 4^2 = 16$

(32)
$$\log_4(\log_5 x) = \frac{1}{2}$$

 $\log_4 x = 4^{\frac{1}{2}} = \sqrt{4} = 2$
 $x = 25$

$$(32)$$
 $X=6$

$$(37)$$
 $a^{\log_{10} 16} = 16$

$$\begin{array}{c}
(38) \\
\log_{n} a + 2\log_{n} b = \\
= 5 + 2.3 = 11
\end{array}$$

$$G(X) = \frac{2}{3}$$
 $G(X) = 2$ no solution

$$X_1 = \cos^{-1}\left(\frac{2}{3}\right) = 0.8411$$

$$X_2 = 2\pi - \cos^{-1}(\frac{2}{3}) = 5.4421$$

(a)
$$a) \sec \frac{4\pi}{3} = \frac{\sqrt{3}}{6} = -\frac{\sqrt{3}}{3}$$

b)
$$\tan \frac{7\pi}{6} = -\frac{\sqrt{3}}{3}$$

$$c)\sin\left(-\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

(5) a)
$$\sin x = \frac{1}{2}$$

$$X_1 = \frac{11}{6}$$

$$X_2 = \frac{511}{6}$$

b)
$$\sin 2x = \frac{1}{\sqrt{2}}$$

 $\sin a = \frac{1}{\sqrt{2}}$

$$a_1 = \frac{377}{4}$$

$$X_1 = \frac{7}{8}$$
, $X_2 = \frac{3\pi}{8}$

(6)
$$\sin x = 1 - 2\sin^2 x$$

$$2\pi h^{2}x + 8in x - 1 = 0$$

$$(2mx-1)(mx+1)=0$$

$$\sin x = \frac{1}{2}$$
 or $\sin x = -1$

3 l=Rorad

1=20. 3 = 15 T cm

$$tanx=0$$
 $conx=\frac{\sqrt{3}}{2}$

$$X_{1}=0$$
 $X_{2}=\frac{\pi}{6}$ $X_{3}=-\frac{\pi}{6}$

(14) 3 cos(x)

$$= \frac{9n^2\theta + 60^{\frac{1}{2}\theta}}{\cos^2\theta \sin\theta} = \frac{1}{\cos^2\theta \sin\theta} = \csc\theta \cdot \sec\theta$$

$$\frac{6 \sin \theta}{2 \sin \theta \cos \theta} = \frac{3}{\cos \theta} = 3 \sec \theta$$

$$(7)_{5}$$
 $960 = -\frac{\sqrt{29}}{2}$

(18)
$$\dot{a} = 3$$
 $y = -3 \cos 2 \left(x - \frac{\pi}{6} \right) + 2$

$$P = \frac{2\pi}{2} = \pi$$

$$Max = 2 + 3 = 5$$

$$Min = 2 - 3 = -1$$

CH. (7) COMBINATORICS

$$6 \frac{10!}{7!} = 720$$

$$T_6 = 10(2)(x)^{5}(-4)^{5}$$

$$= -252x^{3}y^{5}$$