2 - trig ratios in 4 quadrants.docx

Thursday, February 27, 2020 9:36 AM

2 - trig ratios in 4...

2 - trig ratios in 4...

5.2 TRIGONOMETRY

Name: ______ Blk: _____

• Standard position:

- o Vertex at the October of the Cartesian plane
- o Initial arm must coincide with the positive x-axis
- O Positive angles are measured in a <u>Counter clockwist</u> direction

• Label the four quadrants of a Cartesian plane:

- Try: Draw each angle in standard position and identify the quadrant in which it lies.
- a. 60° <u>T</u>

b. 100°

c. 300°

For each angle in standard, position, there is a corresponding acute angle called the

reference angle _____, which is the acute angle between the

terminal arm and the (nearest) x-axis. Thus, any reference angle is between 6° and 90°

Quadrant 1

Quadrant 2

Quadrant 3

Quadrant 4

Try: Draw each angle in standard position, and find the reference angle.

a. 30°

Q=x = 30°

b. 250°

d. 100°

- Try: Determine the angle in standard position when an angle of 60° is reflected
- a. In the y-axis
- b. In the x-axis
- c. In the y-axis and then in

For any angle, θ , the primary trigonometric ratios are:

$$\sin \theta = \frac{9}{7}$$
 $\cos \theta = \frac{2}{7}$ $\tan \theta = \frac{9}{7}$

$$\cos \theta = \frac{\chi}{c}$$

$$\tan \theta = \frac{y}{x}$$

Trigonometry in 4 quadrants:

Quadrant 3 ($180^{\circ} < \theta < 270^{\circ}$)

Quadrant 2 (90° $< \theta < 180^\circ$) 0=180-X

Quadrant 4 (270° $< \theta < 360$ °)

Here is a way to remember the sign of the trigonometric ratios in each quadrant:

Try: The point (-5,12) lies on the terminal arm of an angle, θ , in standard position. Determine the exact trigonometric ratios for $\sin \theta$, $\cos \theta$, and $\tan \theta$.

$$\Gamma = \sqrt{(-5)^2 + 12^2} \quad \sin \Theta = \frac{13}{13}$$

$$= \sqrt{169} \quad \cos \Theta = \frac{-5}{13}$$

$$= 13 \quad \tan \Theta = \frac{12}{-5}$$

$$\sin \Theta = \frac{R}{13}$$

$$\cos \Theta = \frac{-S}{13}$$

$$\frac{13}{4an\theta} : \frac{12}{-5}$$

Determine the measure of θ to the nearest degree.

Sin
$$\alpha = \frac{12}{13}$$

(Sin-1) Sin $\alpha = 0.923$ (Sin-1)
 $\alpha = 67.38^{\circ} \rightarrow \theta = (80 - \alpha)$
= 180 - 67.38
= 112.62°
Assignment p. 426#3-8

PART II

Warm Up:

• Try: Suppose $\tan \theta$ is an angle in standard position, and $\tan \theta = \frac{1}{5}$. Determine the values of so $tan0=\frac{9}{x}$ Of $r=\sqrt{r^2+5^2}$ 0=rel. Quedrant I $r=\sqrt{86}$ Sin0= $\frac{9}{r}=\frac{1}{26}$ $\sin\theta$ and $\cos\theta$.

Solving For Angles:

- a. Use the sign (+ or -) to determine which quadrant the solution(s) is/are in
- b. Solve for the reference angle
- Draw a diagram and use the reference angle to find the angle in standard position

Your calculator will always give you the angle closest to 0°

Try: Determine the standard angle if

where is sine negotive? III, IV

a.
$$\sin \theta = -\frac{1}{\sqrt{2}}, 0^{\circ} \le \theta \le 360^{\circ}$$

Reference angle sin-1(1)

b. $\cos \theta = 0.5$ $0^{\circ} \le \theta \le 180^{\circ}$

rosine is positive in quadrant I

Reference angle = angle in standard position!

cos-1(0.5)

STA is negative in Quadrant ... TII, II

c.
$$\sin \theta = -\frac{\sqrt{3}}{2}$$
, $0^{\circ} \le \theta \le 360^{\circ}$

d. $\tan \theta = -0.7565, 0^{\circ} \le \theta \le 360^{\circ}$

$$\Theta_{\overline{N}} = 360 - 37$$

• Special Right Triangles:

• Try: Determine the trigonometric ratios of all the angles that have 30° as a reference angle.

• Fill in the following table with exact values:

	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	
$\sin \theta$	O	1-2	1 02	MA	1	豆豆	102	12	O	ーえ	豆	13/2	-1	
$\cos \theta$	1	夏	1	12	0	-1/2	点	132	-(-13	1	~1	O	
$\tan \theta$	O	13	١	13	undr	-53	-1	一遍	O	13	1	13	unde	Lined

	300°	315°	330°
$\sin \theta$	MIN	75	-12
$\cos \theta$	1/2	150	1317
an heta	-53	~)	古

Assignment: p.425-9, 10,13-17,20

Assignment: p.425-9, 10,15-17,20