2 - trig ratios in 4 quadrants.docx

Thursday, February 27, 2020 9:36 AM

$W \equiv$

2 - trig ratios in $4 . .$.

8

2 - trig ratios in 4...

5.2 TRIGONOMETRY

Name: \qquad Blk: \qquad

- Standard position:
- Vertex at the origin of the Cartesian plane
- Initial arm must coincide with the positive x-axis
- Positive angles are measured in a \qquad counter clockwise direction

- Label the four quadrants of a Cartesian plane:

$$
\begin{array}{l|l}
\text { II } & \text { I } \\
\text { III } & \text { IV }
\end{array}
$$

- Try: Draw each angle in standard position and identify the quadrant in which it lies.
a. 60° I
b. 100°
c. 300°

II

- For each angle in standard, position, there is a corresponding acute angle called the
\qquad , which is the acute angle between the terminal arm and the (nearest) x-axis. Thus, any reference angle is between 0° and 90° $\alpha=$ reference angle

Quadrant 1

Quadrant 2

Quadrant 3

$\alpha=\theta-180$

Quadrant 4

$$
\alpha=360-\theta
$$

- Try: Draw each angle in standard position, and find the reference angle.

- Try: Determine the angle in standard position when an angle of 60° is reflected
a. In the y-axis

$$
\begin{aligned}
\theta & =180-60 \\
& =120^{\circ}
\end{aligned}
$$

b. In the x-axis

$$
\begin{aligned}
\theta & =360-60 \\
& =300^{\circ}
\end{aligned}
$$

c. In the y-axis and then in the x-axis

$$
\begin{aligned}
\theta & =180+60 \\
& =240^{\circ}
\end{aligned}
$$

- For any angle, θ, the primary trigonometric ratios are:

- Trigonometry in 4 quadrants:

- Here is a way to remember the sign of the trigonometric ratios in each quadrant:

- Try: The point $(-5,12)$ lies on the terminal arm of an angle, θ, in standard position.

Determine the exact trigonometric ratios for $\sin \theta, \cos \theta$, and $\tan \theta$.

$$
\begin{aligned}
r & =\sqrt{(-5)^{2}+2^{2}} & \sin \theta=\frac{12}{13} \\
& =\sqrt{169} & \cos \theta=\frac{-5}{13} \\
& =13 & \tan \theta=\frac{12}{-5}
\end{aligned}
$$

Determine the measure of θ to the nearest degree.

$$
\begin{aligned}
\sin \alpha & =\frac{12}{13} \\
\left(\sin ^{-1}\right) \sin \alpha & =0.923\left(\sin ^{-1}\right) \\
\alpha & =67.38^{\circ} \rightarrow \theta
\end{aligned} \begin{aligned}
& =180-\alpha \\
& =180-67.38 \\
& =112.62^{\circ}
\end{aligned}
$$

PART II
Warm Up:

- Try: Suppose $\tan \theta$ is an angle in standard position, and $\tan \theta=\frac{1}{5}$. Determine the values of $\sin \theta$ and $\cos \theta . \quad \tan \theta=\frac{y}{x}$
(1) Find $\bar{r}=\sqrt{1^{2}+5^{2}}$

Quadrant I

$$
r=\sqrt{26}
$$

$$
\sin \theta=\frac{y}{r}=\frac{1}{\sqrt{26}}
$$

$$
\cos \theta=\frac{x}{r}=\frac{5}{\sqrt{26}}
$$

Quadrant
$\sin \theta=\frac{-1}{\sqrt{26}}$

$$
\cos \theta=-\frac{5}{\sqrt{26}}
$$

Solving For Angles:
a. Use the sign (+ or -) to determine which quadrant the solutions) is/are in
b. Solve for the reference angle
c. Draw a diagram and use the reference angle to find the angle
**Your calculator will always give you the angle closest to $0^{\circ * *}$ in standard position

- Try: Determine the standard angle if
where is sine negative? IT, IV
a. $\sin \theta=-\frac{1}{\sqrt{2}}, 0^{\circ} \leq \theta \leq 360^{\circ}$

b. $\cos \theta=0.50^{\circ} \leq \theta \leq 180^{\circ}$

$$
\begin{aligned}
& \text { Reference angle } \\
& \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& =45^{\circ} \\
& \begin{array}{ll}
\Theta_{\text {正 }}=180+45 \\
\leq \theta \leq 180^{\circ} &
\end{array} \\
& \hline
\end{aligned}
$$

cosine is positive in quadrant I

$$
\begin{aligned}
& \text { Reference angle = angle in standard position! } \\
& \begin{aligned}
& \cos ^{-1}(0.5) \\
&=60^{\circ} \\
& \theta=60^{\circ}
\end{aligned}
\end{aligned}
$$

Sin is regative in Quadrant ... 而, 片
c. $\sin \theta=-\frac{\sqrt{3}}{2}, 0^{\circ} \leq \theta \leq 360^{\circ}$

$$
\begin{aligned}
\Theta_{\text {III }} & =180+60 & \Theta_{\text {III }} & =360-60 \\
& =240^{\circ} & & =300^{\circ}
\end{aligned}
$$

d. $\tan \theta=-0.7565,0^{\circ} \leq \theta \leq 360^{\circ}$

$$
\begin{aligned}
& \text { Ref. angle } \\
& \begin{aligned}
& \tan ^{-1}(0.7565) \\
&=37^{\circ} \\
& \begin{aligned}
I I & \\
& =180-37 \\
& =143^{\circ}
\end{aligned} \begin{aligned}
\Theta_{I V} & =360-37 \\
& =323^{\circ}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

- Special Right Triangles:

- Try: Determine the trigonometric ratios of all the angles that have 30° as a reference angle.

	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°
270°												
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$
	-1											
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$
0												
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	uefind	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
undefined.												

	300°	315°	330°
$\sin \theta$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$
$\cos \theta$	$1 / 2$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
$\tan \theta$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$

Assignment: p. $425-4,10,15-1 t, 20$

