6 - completing the square.docx

Wednesday, January 22, 2020 9:15 AM

4.5 COMPLETING THE SQUARE

Name: \qquad Blk: \qquad

- Old Skill: Expand the following expressions:
a. $3(x+1)^{2}-4$
c. $-(x+2)^{2}-1$
$3(x+1)(x+1)-4$
$3\left(x^{2}+2 x+1\right)-4$
$3 x^{2}+6 x+3-4$
b. $3(x-2)^{2}+5$ d. $-(x-2)^{2}+7$
$3 x^{2}-12 x+17$
$-x^{2}+4 x+3$

You can change vertex form \rightarrow general form by expanding!

- Old Skill: Solve the following equations by completing the square!

$$
a^{2}+2 a b+b^{2}
$$

a. $x^{2}+6 x+5=0$
$x^{2}+6 x=-5$
$x^{2}+6 x+9=-5+9$
$\sqrt{(x+3)^{2}}=\sqrt{4}$
$x+3= \pm 2$
$x=-3 \pm 2$
$x=-1,-5$

- $y=a x^{2}+b x+c$ is known as the general form function.
- Welfarechangequearaion from general form to vertex form by of a quadratic
 γ
- Example 1: Change $y=x^{2}+8 x+12$ into vertex form.

- Example 2: What if $a>1$?

Change $y=3 x^{2}-12 x+7$ into vertex form.

$y=\left(3 x^{2}-12 x\right)+7$	Look at the first 2 terms
$y=3\left(x^{2}-4 x\right)+7$	4 $)^{2}$
$y=3\left(x^{2}-4 x+4-4\right)+7$	Add the 'magic number' that makes a perfect square in trinomial form Subtract the 'magic number' times a
$y=3\left(x^{2}-4 x+4\right)-12+7$	Rewrite as a perfect square binomial
$y=3(x-2)^{2}-12+7$	Clean it up
$y=3(x-2)^{2}-5$	

- Example 3: What if $a<1$?

Change $y=-4 x^{2}+9 x-2$ into vertex form.

$y=-4 x^{2}+9 x-2$	Look at the first 2 terms
$y=-4\left(x^{2}-\frac{9}{4} x\right)-2$	Factor out a from the first 2 terms ***WATCH YOUR SIGNS!!***
$y=-4\left(x^{2}-\frac{9}{4} x+\frac{81}{64}-\frac{81}{64}\right)-2$	Add the 'magic number' that makes a perfect square in trinomial form Subtract the 'magic number' times a $* * * W A T C H ~ Y O U R ~ S I G N S!!* * ~$
$y=-4\left(x^{2}-\frac{9}{4} x+\frac{81}{64}\right)+\frac{81}{16}-2$	Rewrite as a perfect square binomial
$y=-4\left(x^{2}-\frac{9}{8}\right)^{2}+\frac{81}{16}-\frac{32}{16}$	Clean it up
$y=-4\left(x^{2}-9 / 8\right)^{2}+49$	16

- Example 4: What if $0<|a|<1$?

Change $y=\frac{1}{5} x^{2}+2 x-1$ into vertex form.

