2.3 Periodic Table and Atomic Theory

2.3 Periodic Table and Atomic Theory

- Elements with similar properties have similar electron arrangements
- Bohr models show electron arrangement in shells or orbitals
- The arrangement of electrons in these orbitals is called electron configuration

Bohr model patterns

- Chemical families on the periodic table have the same number of valence electrons (electrons that appear on the valence or outer most shell)
- Elements in the same period have the same number of shells
- Period number indicates the number of electron shells

Reading the Periodic Table

- For the first 20 elements of the periodic table you can "read" how electrons are arranged around the nucleus.
- Rows represent levels (or layers) of the orbital.
- Columns represent each electron added.
- (pg 54)

1st Row

- The first energy level can only hold two electrons.
- So there are only two elements in the first row (hydrogen and helium)

Hydrogen and Helium

2nd row

2nd Row

- The second energy level can hold eight electrons.
 - 2 columns + 6 more columns
 - There are eight elements in the second row

Other Rows

- 3rd row, 8 electrons
- 4th row, 18 electrons

Bohr models

- Instead of continuing to draw all these circles a
 Bohr diagram simplifies things for us.
- A Bohr diagram just shows the nucleus and indicates how many electrons are in each level.
- Lets practice.
- Remember the first layer can hold 2 electrons, the 2nd and 3rd can hold 8! If you forget just count the number of elements in each row!

Lithium 3 p⁺ 1e 2e $4 n^0$ Berylium 4 p⁺ 2e 2e* 5 n⁰ Boron 5 p⁺ 2e 3e $6 n^0$ Carbon 6 p⁺ 6 n⁰ 2e* Nitrogen

7 p⁺

 $7 n^{0}$

2e

Flourine

$$\begin{array}{c|c}
\hline
9 p^{+} \\
\hline
10 n^{0}
\end{array}$$

Neon

$$\begin{array}{c|c}
\hline
10 p^+ \\
10 n^0
\end{array}
\qquad
\begin{array}{c}
2e^- \\
\hline
\end{array}$$

Sodium

$$\begin{array}{c|c}
\hline
11 p^{+} \\
12 n^{0}
\end{array}$$

$$\begin{array}{c|c}
2e^{-} & 8e^{-} \\
\end{array}$$

Oxygen

Flourine

Neon

Sodium

Complete your other diagrams from your handout

Atom Stability

- Noble gases are very unreactive because their atoms have filled valence shells. Filled shells make atoms stable.
 Atoms with filled shells do not easily trade or share electrons.
- Other atoms gain or lose electrons in order to achieve the stability of noble gases. Gaining or losing electrons makes atoms into ions.
 - Metals lose electrons to form positive ions (more positive!)
 - Non-metals gain electrons to form negative ions (more negative)!
 - Ions have a similar electron arrangement to the nearest noble gas
 - Example: Sodium ion (Na+) has 11 protons (11+) and 10 electrons (10-) for a total charge of 1+

	Lithium	Magnesium	Chlorine
Atom	Li 3 p 2, 1	Mg 12 p 2, 8, 2	Cl 17 p 2, 8, 7
Ion	Li+ 3 p 2	Mg ² + 12 p 2, 8	Cl– 17 p 2, 8, 8

- Each of the Alkali metals has one electron in its outer most level. The atom becomes more positive if it can get rid of that one outer electron!
- If the atom is able to give the outer electron away it becomes positive in charge. It will have one more proton than electrons.
- Thus it is an ion with at + charge.

 Fill in the following Bohr Diagrams for the alkali metals and the non-metal halogens and their ions, the first pair is already done for you.

Practice drawing Bohr models

- Handout
- Quiz next class on Bohr models and review
- Atomic theory (ch 1/20 test on Monday