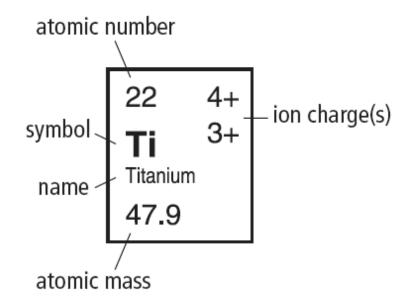

2.2 Periodic Table

Another casualty in the War of the Atoms


- Hand in lab from last class
- Notes

2.2 Periodic Table

- Origin of the periodic table
 - Chemists in the 10th century wished to organize elements
 - Attempts focused on grouping elements with similar properties
 - In 1867, Dimitri Mendeleev found patterns in the elements and organized them into table
 - The resulting table had holes for elements not yet discovered

Periodic Table

 The Periodic Table provides information on the physical and chemical properties of elements

Atomic Mass - mass of average atom (including its isotopes) and is calculated using the number of protons (atomic number) and neutrons. We always round to the nearest whole number for calculations.

Atomic Number - number of protons Ion Charge - electric charge that forms when an atom gains or loses electrons

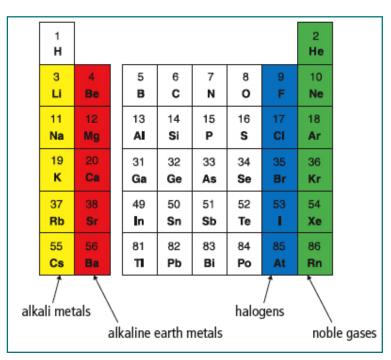
Isotopes

- Isotopes are different atoms of a particular element that have the same number of protons but different numbers of neutrons.
 - This means they have a different mass number
- Carbon-12 ← number of nuetrons
- Carbon-13
- Carbon-14

Periodic Table

	1	1																18
1	H Hydrogen 1,0	2			metal		Atomic No	umber —	22 4 Ti 3	+ - lon	charge(s)		13	14	15	16	17	2 0 He Helun 4.0
2	3 + Li Lithium 6,9	4 2+ Be Beryllium 9.0			meta ll oi		Name Atomic M	ass —	Tranium 47.9				5 B 8x4en 10 . 8	6 C Carbon 12,0	7 3- N Nitrogen 14.0	8 2- O Oxygen 16,0	9 – F Fluorino 19.0	10 0 Ne Nen 20,2
3	11 + Na sedun 23.0	12 2+ Mg Vagnesium 24,3	3	4	5	6	7	8	9	10	11	12	13 3+ All Aluminum 27,0	14 Si silcon 28.1	15 3- P Phosphorus 31.0	16 2- S Subtur 32.1	17 — CII CHoins 35.5	18 0 Ar Argen 39.9
4	19 + K Polassium 39.1	20 2+ Ca Calcium 40.1	21 3+ Sc surdum 45.0	22 4+ Ti 3+ Titanium 47.9	23 5+ V 4+ Variation 50.9	24 3+ Cr ²⁺ Chronium 52.0	25 2+ Mn 3+ Vargaress 54.9	26 3+ Fe ²⁺ Im 55.8	27 2+ Co 3+ coak 58.9	28 2+ Ni 3+ Nickel 58.7	29 2+ Cu 1+ 63.5	30 2+ Zn 2n: 65.4	31 3+ Ga Gallun 69.7	32 4+ Ge Germanium 72.6	33 3- As Amenia 74.9	34 2- Se Selenium 79.0	35 — Br Branina 79.9	36 0 Kr Krysten 83.8
5	37 + Rb Rutidum 85.5	38 2+ Sr Strontum 87.6	39 3+ Y Yhlun 88.9	40 4+ Zr Ziroznium 91.2	41 3+ Nb 5+ Noblum 92.9	42 2+ Mo 3+ Molybdenum 95.9	43 7+ Tc Tednetun (98)	44 3+ Ru ⁴⁺ Ruterium 101.1	45 3+ Rh ⁴⁺ Rhodum 102.9	46 2+ Pd ⁴⁺ Paledun 106.4	47 1+ Ag sler 107.9	48 2+ Cd Cadmium 112,4	49 3+ In In In 114.8	50 4+ Sn 2+ Tn 118.7	51 3+ Sb 5+ Antincey 121.8	52 2- Te Telutum 127.6	53 — I Indine 126,9	54 0 Xe Xerxon 131.3
6	55 + Cs Ceelun 132.9	56 2+ Ba Barlum 137.3	57 3+ La Lantanum 138,9	72 4+ Hf Hatrium 178.5	73 5+ Ta Tantalum 180 . 9	74 6+ W Tungsten 183 . 8	75 4+ Re ⁷⁺ Rhenium 186-2	76 3+ Os ⁴⁺ Osnium 190.2	77 3+ ir 4+ Hdum 192-2	78 4+ Pt ²⁺ Platrum 195.1	79 3+ Au ¹⁺ 644 197.0	80 2+ Hg 1+ Vecury 200,6	81 1+ TI 3+ Tvallum 204.4	82 2+ Pb 4+ Leed 207.2	83 3+ Bi 5+ Blanuth 209,0	84 2+ Po 4+ Polenium (209)	85 – At Astaine (210)	86 0 Rn Radon (222)
7	87 + Fr Francium (223)	88 2+ Ra Redum (226)	89 3+ Ac Actinium (227)	104 Rf Rutherfordum (261)	105 Db Datelan (262)	106 Sg Sasborgium (263)	107 Bh Bohdum (262)	108 Hs Hushim (265)	109 Mt Metredum (266)	110 Ds Darmstadium (281)	111 Rg Rentgenium (272)	112 Uub* Unuralum (285)	113 Uut* Uruntium (284)	114 Uuq* Ununquadum (289)	Uup* Uhanpentun (288)	116 Uuh* Ununkedun (292)		
				V										,	* Tempora	ary names		

The left side of the table forms positive ions. The right side negative


58 34 Ce 44 Cerlum 140.1	59 3+ Pr 4+ Presedentur 140.9	60 3+ Nd Nedprium 144,2	Promethium Sa	Sm ⁴⁺	63 3+ Eu ²⁺ Europkin 152,0	64 3+ Gd Cadelnium 157.3	65 3+ Tb 4+ Tetiun 158,9	66 3+ Dy Dysprodum 162.5	67 3+ Ho Holnium 164_9	68 3+ Er Etkin 167.3	69 3+ Tm ²⁺ Trailum 168.9	70 3+ Yb 2+ Ytetiun 173.0	71 3+ Lu Luketun 175.0
90 44 Th Thetun 232,0	91 5+ Pa 4+ Protestrium 231.0	92 6+ U 4+ 5+ Unanium 238,0	Nephrium 6+ Pla	u 6+ steien 5+	95 3+ Am 5+ Americian 6+ (243)	96 3+ Cm cutum (247)	97 3+ Bk ⁴⁺ Befolkun (247)	98 3+ Cf cattenium (251)	99 3+ Es Ensteinium (252)	100 3+ Fm Fernium (257)	101 2+ Md 3+ Medelelum (258)	102 2+ No 3+ Nobelian (259)	103 3+ Lr Lawrencium (262)

Metals, Non-metals, Metalloids

	State at Room Temperature	Appearance	Conductivity	Malleability and Ductility		
Metals	 solid except for mercury (a liquid) 	shiny lustre	 good conductors of heat and electricity 	malleable ductile		
Non-metals	some gasessome solidsonly bromine is a liquid	not very shiny	 poor conductors of heat and electricity 	brittlenot ductile		
Metalloids	• solids	• can be shiny or dull	may conduct electricity poor conductors of heat	brittle not ductile		

Periods and Families

- Each horizontal row in the periodic table is a period
- Vertical columns form groups or chemical families
 - Alkali metals highly reactive group 1
 - Alkaline earth metals group 2, burn in air if heated
 - Halogens group 17, highly reactive non-metals
 - Noble gases group 18, stable and unreactive non-metals

Some questions

- State how many protons are present in each of the following atoms
 - Silicon chromium and iodine

What is the most common charge of chromium?

Task for at home

- What is the difference between a bohr model and an electron cloud model?
 - Is one more correct than the other?
 - Sketch a diagram of each type of model of the element you are studying for your poster.
 - Lab/project time.