2-1 Simplifying Radicals

Friday, October 18, 2019 12:23 PM

Simplifying...

Simplifying...

2.1	SIN	ЛΡΙ	IFY	ING	RAD	ICALS
~		411 L		1110	11/C	

Name:	Blk:
ivallic.	DIK.

Recall:

/	<u></u> \
$\binom{n}{\sqrt{n}}$	$x \leftarrow$
×	
/	K

x = radicand

n = index

radical

Evaluate:

a.
$$\sqrt{144} =$$

b.
$$\sqrt[3]{27} =$$

c.
$$\sqrt[4]{16} =$$

Complete the table.						
Expression	x = 2	x = -2				
x^2						
$\sqrt{x^2}$						
x^3						
$\sqrt[3]{x^3}$						
x^4						
$\sqrt[4]{x^4}$						
<i>x</i> ⁵						
$\sqrt[5]{x^5}$						
	Expression x^{2} $\sqrt{x^{2}}$ x^{3} $\sqrt[3]{x^{3}}$ x^{4} $\sqrt[4]{x^{4}}$ x^{5}	Expression $x = 2$ x^{2} $\sqrt{x^{2}}$ x^{3} $\sqrt[3]{x^{3}}$ x^{4} $\sqrt[4]{x^{4}}$ x^{5}				

 \rightarrow How can you predict the sign of a radical expression?

• Recall:

$$\binom{n}{\sqrt{x}}\binom{n}{\sqrt{y}} = \sqrt[n]{xy}$$

Eg.
$$(\sqrt[3]{7})(\sqrt[3]{3}) =$$

$$\frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}}$$

Eg.
$$\left(\frac{\sqrt{30}}{\sqrt{6}}\right) =$$

• Recall: Whole/Entire Radical ↔ Mixed Radical

a.
$$\sqrt{24} =$$

b.
$$4\sqrt[3]{2} =$$

1. Change to a mixed radical:

- Option 1: Prime factorize
- Option 2: Factor squares, cubes, fourths, etc

a.
$$\sqrt[3]{\frac{-16}{135}}$$

b. $\sqrt[4]{m^7}$

mid - m

= $\sqrt[3]{\frac{-16}{135}}$

= $\sqrt[3]{\frac{-16}{135}}$

= $\sqrt[3]{\frac{-16}{135}}$

= $\sqrt[4]{m^7}$

mid - m

= $\sqrt[4]{\frac{-16}{135}}$

= $\sqrt[4]{m^7}$

= $\sqrt[4]{\frac{-16}{135}}$

= $\sqrt[4]{m^7}$

= $\sqrt[4]{\frac{-16}{135}}$

= $\sqrt[4]{m^7}$

2. Change to an entire radical

 Move the constant on the outside of the radical into the radical and write it as a power with an exponent equivalent to the index of the radical

a.
$$-3\sqrt[3]{\frac{2}{27}}$$
 (3⁴)

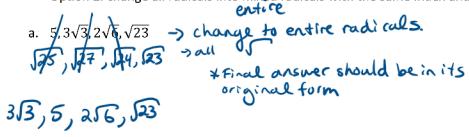
b. $x\sqrt[3]{x}$

c. $2k^2(\sqrt[3]{4k})$

$$= -\sqrt{3^4 \cdot 2}$$

$$= -\sqrt{3^4 \cdot 2}$$

$$= -\sqrt{162}$$


$$= -\sqrt{162}$$

$$= -\sqrt{6}$$

b. $x\sqrt[3]{x}$

$$= \sqrt[3]{(2k^2)^3 4k}$$

- 3. Arrange from greatest to least:
 - Option 1: change all your radicals to decimals and compare
 - Option 2: change all radicals into mixed radicals with the same index and compare

Defining your variable

- When you have to simplify radicals with variables, you must DEFINE your variables or state your RESTRICTIONS
- If the index is EVEVV, the radicand must be NON-NEGATIVE (≥ 0), or the radical is undefined (unpossible!)
 - o In order to indicate that we won't let this happen, we have to set the restrictions for the expression
- Odd index radicals have no restrictions
- Eg. For which values of the variable is each radical defined? (In other words, what values of x (or whatever the variable is) could we substitute into the following radicals to ensure that we would get an actual answer?) Simplify the radical if possible. $\chi^2 = |\chi|$

a.
$$\sqrt{27x^2}$$
 XER
= $\sqrt{9.3 \cdot x^2}$ e.s. $\sqrt{27x^4}$ XER
= $3/\sqrt{3}$ = $\sqrt{9.3x^4}$
= $3/\sqrt{3}$ = $\sqrt{3}/\sqrt{3}$ = $\sqrt{3}/\sqrt{3}/\sqrt{3}$ = $\sqrt{3}/\sqrt{3}/\sqrt{3}$

$$\begin{array}{ll}
& \text{6. } \sqrt{24y^3} \text{ yell} \\
& \text{e.s. } \sqrt{27x^4} \text{ xell} \\
& = \sqrt{9.3x^4} \\
& = 3x^2\sqrt{3}
\end{array}$$

$$= 3x^2\sqrt{3}$$

c.
$$\sqrt[4]{-12x^3}$$
 $\times \leq D$ cannot simplify

d.
$$\sqrt{45}h^2$$
 a GR
= $\sqrt{9.5 \cdot a^2}$
= $3|a|/5$

Use absolute value notation if the variable can be any real number but the radicand must be positive (index is even)

Assignment:

+ WB pg's #5-7, 10-14,16

10-101

Finish selfreflection.