5-Negative Exponents

Thursday, October 3, 2019 12:41 PM
\qquad Blk: \qquad
Recall: $x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$ and $x^{-m}=\left(\frac{1}{x}\right)^{m}$ or $\frac{1}{x^{m}}$ where $\frac{1}{x}$ is the reciprocal of x

- Two numbers are reciprocals when their product is equal to 1
- Example:

$$
4 \cdot \frac{1}{4}=1 \quad \frac{4}{3} \cdot \frac{3}{4}=1
$$

Powers with a Negative Integer Exponent and a Rational Base:

$$
\left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m}, \text { where } a \text { and } b \text { are integers; } a \neq 0, b \neq 0
$$

Example 1: Evaluate each power

a) 8^{-2}
$\left(\frac{1}{8}\right)^{2}$
b) $\begin{aligned} & (-2)^{-4} \\ = & \frac{1}{(-2)^{4}}\end{aligned}$
c) $(0.3)^{-3}$
$=\left(\frac{3}{10}\right)^{-3}$
$=\left(\frac{10}{3}\right)^{3}$
d) $\left(\frac{15}{15}\right)$
$=\left(\frac{15}{18} \div\right)^{2}$ simplify.
$=\frac{1}{8^{2}}$
$=\frac{1}{64}$
$=\sqrt{16}$
$=\frac{1000}{27}$
$=\left(\frac{5}{6}\right)^{2}=\frac{25}{36}$

Powers with Negative Rational Exponents:

$$
\begin{aligned}
& x^{-\frac{m}{n}}=\frac{1}{\sqrt[n]{x^{m}}} \quad \text { OR } \quad x^{-\frac{m}{n}}=\frac{1}{(\sqrt[n]{x})^{m}} \text {, where } x \text { is a non-zero integer, and } m \text { and } n \\
& \text { are natural numbers; for even values of } m \text { and } n, m \neq n \text { if } a<0 .
\end{aligned}
$$

Example 2: Evaluate each power after writing it as a radical.
a) $(-8)^{-\frac{2}{3}}$
b) $100^{-2.5} \rightarrow-\frac{5}{2}$
c) $64^{-\frac{5}{6}}$
d) $-81^{-\frac{3}{4}}$
$=\left(\frac{1}{-8}\right)^{2 / 3}$
$=100^{-5 / 2}$
$=\frac{1}{(\sqrt[3]{(-8)})^{2}}$
$=\frac{1}{(-2)^{2}}$
$=\left(\frac{1}{100}\right)^{5 / 2}$
$=\left(\frac{1}{64}\right)^{5 / 6}$
$=-\left(\frac{1}{81}\right)^{3 / 4}$
$=\frac{1}{(\sqrt[6]{64})^{5}}$
$=-\frac{1}{(\sqrt[4]{81})^{3}}$
$=\frac{1}{(\sqrt{100})^{5}}$
$=\frac{1}{2^{5}}$
$=-1$
$=\frac{1}{4}$
$=\frac{1}{(10)^{5}}$

$=\frac{1}{32}$

Powers with Negative Rational Exponents and Rational Bases:

$$
\begin{aligned}
& \left.\left(\frac{a}{b}\right)^{-\frac{m}{n}}=\sqrt[n]{\left(\frac{b}{a}\right)^{m}} \quad \text { OR }\left(\frac{a}{b}\right)^{-\frac{m}{n}}=\left(\sqrt[n]{\left(\frac{b}{a}\right.}\right)\right)^{m} \text {, where } \frac{a}{b} \text { is a rational number, and } \\
& a \neq 0, b \neq 0 \text {, and } m \text { and } n \text { are natural numbers. }
\end{aligned}
$$

- Basically we are working with all fractions now! Example 3: Evaluate each power after writing it as a radical

$$
\begin{array}{llll}
\text { a) }\left(\frac{1}{8}\right)^{-\frac{-2}{3}} & \text { b) }\left(\frac{100}{9}\right)^{\frac{3}{2}} & \text { c) }\left(\frac{324}{64}\right)^{-\frac{3}{4}} & \text { d) }\left(-\frac{125}{64}\right)^{-\frac{3}{4}} \\
=\left(\frac{8}{1}\right)^{2 / 3} & =\left(\frac{9}{100}\right)^{3 / 2} & =\left(\frac{64}{324} 54\right. & =\left(-\frac{64}{125}\right)^{3 / 4} \\
=(\sqrt[3]{8})^{2} & =\left(\sqrt{\frac{9}{100}}\right)^{3} & =\left(\frac{16}{81}\right)^{3 / 4} & =\left(\sqrt[4]{\frac{-64}{125}}\right)^{3} \times \\
=2^{2} & =\left(\frac{3}{10}\right)^{3} & =\left(\sqrt{\frac{16}{81}}\right)^{3} & =\text { you cant have } \\
=14 & \text { an even index and } \\
=\left(\frac{27}{1000}\right. & & =\left(\frac{2}{3}\right)^{3}=\frac{8}{27} & \text { a negative number. }
\end{array}
$$

Example 4: Application to a word problem
Use the formula $C(t)=A(2)^{-\frac{t}{5}}$ to determine how much caffeine remains in the body after 12 hours when the initial mass of caffeine ingested is 75 mg . Give your answer to 1 decimal place.

$$
\begin{array}{rlrl}
C(t) & =A(2)^{-t / 5} & t=12 \text { hours } \\
C(12) & =75(2)^{-12 / 5} & \left.\frac{1}{2}^{1(12 / 5}\right) \\
& =75\left(\frac{1}{2}\right)^{12 / 5} & \\
& =14.2 \mathrm{mg}
\end{array}
$$

Assignment: In a group answer (ω_{B})
Q \# $6 a, 7 f, 8 h, 11 e, 12 b, 13 a, 20$ (starts ${ }^{\circ}$ page 56)

- on a separate paper
- show your steps/work
- Hand in
- you can do a rough copy on whiteboards

HW: Do the rest of $W B$ questions.

