\qquad

1. Modelling multiplication with number lines:

- First number indicates how many normal/opposite jumps
- Second number indicates the size of each jump

Examples:
2. $(2)(5)=$
\qquad normal/opposite jumps of \qquad

3. $7-2=$
\qquad normal/opposite jumps of \qquad

4. $(-3)(3)=$
\qquad normal/opposite jumps of \qquad

5. $(-4)(-6)=$
\qquad normal/opposite jumps of \qquad

You Try:

1. $(4)(-3)=$
\qquad normal/opposite jumps of \qquad

2. $(-2)(-7)=$ normal/opposite jumps of \qquad

3. Some multiplication reminders:
4. Anything multiplied by $0=$ \qquad
a. Example: $(-5)(0)=$
5. Anything multiplied by $(+1)=$ \qquad
a. Example: $(9)(1)=$
6. $(1)(2)(3)=(3)(2)(1)=(2)(3)(1)=(2)(1)(3)$
$(+)(+)=\ldots \quad$ Example: $(4)(6)=$
$(+)(-)=\quad$ Example: $(7)(-3)=$
$(-)(+)=\quad$ Example: $(-2)(5)=$
$(-)(-)=\quad$ Example: $(-3)(-6)=$

You Try:

1. $(4)(0)=$
2. $(-7)(2)=$
3. $(11)(-6)=$
4. $(9)(7)(0)=$
5. $(8)(7)=$
6. $(-4)(-5)(-4)=$
7. $(-5)(3)(-2)=$
8. $(5)(-3)(-10)=$
9. $(2)(7)(-5)=$
10. $(-14)(2)(3)=$

Modelling multiplication with colored tiles

- Shaded tiles $=(-)$
- First number indicates adding/removing this many groups
- Second number indicates the size of each group

Examples:

- Division is OPPOSITE of multiplication
- Eg. $(3)(8)=$ \qquad \rightarrow \qquad normal/opposite jumps of \qquad to get \qquad
$24 \div 8=$ \qquad \rightarrow how many jumps of \qquad in \qquad

Answer: \qquad

- The rules for dividing integers are the same as for multiplying
- Fill in the table below:

\div	+	-
+		
-		

- Fractions are a shorthand for division $-\frac{a}{b}=a \div b$
- Eg. $\frac{21}{7}=21 \div 7=3$
- $\frac{0}{\text { anything }}=0$
Eg. $\frac{0}{10}=0$
- $\frac{\text { anything }}{0}=$ not possible
Eg. $\frac{10}{0}=$ not possible

You Try:

1. $(-30) \div(5)=$
2. $(-10) \div(-5)=$
3. $(-24) \div(6)=$
4. $14 \div 7=$
