1.1 Roots of Fractions

Monday, September 23, 2019 10:43 AM

Fill in the table below

	a	<i>a</i> as a product of prime	\sqrt{a}	$\sqrt[3]{a}$]
		factors	γu	vu .	
	1	1-1	117=1	31=1	
	4	2.2	54=2	354 = 1.3	
	8	2.2.2	18 = 2.8 252	38=2	
	9	3.3	59=3	39:21	
	16	2.2.2.2	J16 = 4	3 116 = 2.5	232)
	27	3.3.3	27 = 3 3 = 5.2	3 27 : 3	
	64	2.2.2.2.2.2.2	્રિન્ = શ્ર	364 =4	
Hows eise (81	3.3.3.3	81 = 9	381:4.3	33 3
	0.5 2	トー	1/2 = 0.7	3 1/2 = 0.8	
you ?	0.25	12.2	4-2	3 + : 0.6	
west.				•	
	What did y	you notice?			

Ma11

DEFINITIONS:

Perfect square - The product of TWO equal integers Perfect cube - The product of THREE equal in Principle square root – the **POSITIVE** square root of a number

Example: 36 = (6)(6) or (-6)(-6)....

V36 could be 6 or -6 For now we will only consider the positive case = (x)

ESTIMATING SQUARE ROOTS AND CUBE ROOTS

We estimate roots by using 'bench marks'.

Example 1) Estimate the value of each radical to 1 decimal place. Verify.

Ma11

DIVISION PROPERTY OF RADICALS

 $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ where *a* and *b* are positive numbers if *n* is even

DETERMINING THE SQUARE ROOT AND CUBE ROOT OF A FRACTION

Ma11