	Pre-Calculus 11 7.6 Applications of Rational Expression Name:	ons							
	Rational equations can be used to solve a variety of real-world problems, including								
	those involving motion, work, proportion.								
	Example 1: Solving Problems Involving Motion Revall time = distance Speed								
	A boat travels at an average speed of 15 km/h in still water. The boat travels 12 km								
	of the current. * use a chart*								
	let x = speed of the current		downstram	upstream.					
	- down stream (taster speed) up " (slower)	Distance (km)	12	8					
		aug- (icax)	127~	15-00					
		li me (d)	12	12-1					
	lines are equal :- down = up.								
	15+4 = 78								
	12(15-2) = 8(12+2)								
	180-12x=120+8>								
	60 = 20%								
Hanswerina / 3 = X									
	The Speed of the	(Ulren	+ ('s 3)	ew/h					

Example 2: Solving problems Involving Work

Example 2: Solving problems Involving Work

Paul can paint a garage door in 3 h. When Paul and Graham work together, they can paint the same garage door in 1 h. How long would it take Graham to paint the garage door on his own? let t= the hours of time it takes heaham to paint on his own.

	time	knount Aus (an paint	Jamourt 6	paint		_
	Thour	1/3	1/2	13/3		
((much $\frac{1}{3} + \frac{1}{7}$	=	L+3=3+	=	/1	aham (c

 $\frac{t}{34} + \frac{3}{34} = \frac{3+}{34}$ $\frac{t}{34} = \frac{3+}{34}$ $\frac{t-3}{34} = 1.5$ | Paint tue door | Involving Proportion | Involving Proporti

Example 3: Solving problems Involving Propor

How much lemon juice must be added to 2 L of water to make a lemonade solution that

contains 20% lemon juice? let v = the volume of lemonjuice added (2) Lo total volume of the solution (42)

(20%) total volume = = 20

V 20

1000 = 20(0+2) 1000 = 200+40 800 = 40

· /2 a Little of lemon jerice must be added tomake a Lemonaide solution of 20% juice

v= / 20.5 P.596-603#5-12