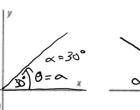
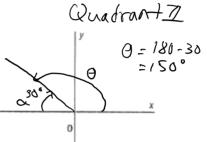
6.2 Angles in Standard Position in All Quadrants

Wednesday, March 30, 2016 1:27 PM

Pre-Calculus 11
6.2 Angles in Standard Position in All Quadrants
Nama

2 1 3

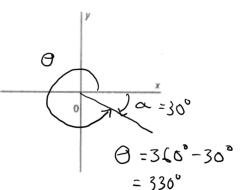

The terminal arm of an angle in Quadrant 1 can be successively reflected in both axes to form angles in all 4 quadrants.


Each angle is in standard position. The <u>reference angle</u> for all 4 angles is the acute angle that the terminal arm makes with the <u>X-axis</u>.

For example, each of the following angles in standard position have the same reference angle of 30°.

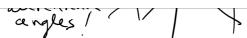
Quadrant I


Reference angle
is equal to
the langle in
Standon diposition $O = \infty$

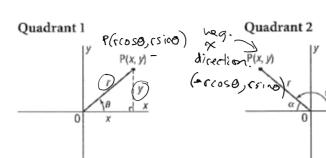


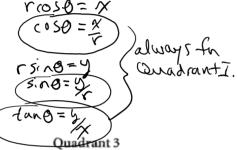
QuadrantII

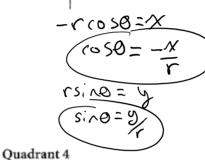
Quadrant IV

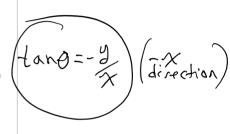


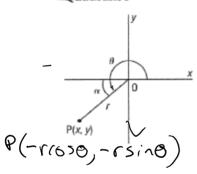
all reference cengles

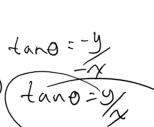

In the previous lesson, the trigonometric ratios of an angle in standard position in Quadrant 1 were related to the coordinates of a point on the terminal arm of the angle. These relationships can be extended to define the primary trigonometric ratios for any angle in standard position.

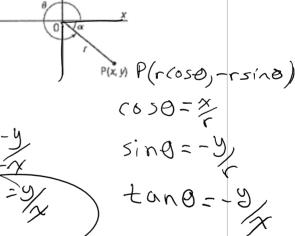

Quadrant 1

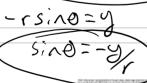

Quadrant 2

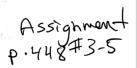



In the previous lesson, the trigonometric ratios of an angle in standard position in Quadrant 1 were related to the coordinates of a point on the terminal arm of the angle. These relationships can be extended to define the primary trigonometric ratios for any angle in standard position.









Trigonometric Ratios of Angles in Standard Position

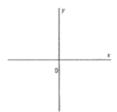
For any angle θ in standard position, where $0^{\circ} \le \theta \le 360^{\circ}$, with terminal point P(x, y), the primary trigonometric ratios are defined as:

$$\cos \theta = \frac{x}{r}$$
 $\sin \theta = \frac{y}{r}$ $\tan \theta = \frac{y}{x}$
where $r = \sqrt{x^2 + y^2}$

Example 1

The Point B(-2,-4) is on the terminal arm of an angle θ in standard position.

a. Determine the primary trigonometric ratios of $\boldsymbol{\theta}$


a.	Determine the primary trigonometric ratios of $ heta$	
b.	Determine the measure of $ heta$ to the nearest degree.	

The definitions of the trigonometric ratios can be used to determine the	for the primary
trigonometric ratios of angles related to the special angles	

45-45-90 Triangle

30-60-90 Triangle

CAST Rule:

Example 2

a. State the quadrants in which $\cos\theta = \frac{1}{\sqrt{2}}$

b. Determine which values of θ satisfy $\,\cos\theta=\frac{1}{\sqrt{2}}\,{\rm for}\,\,0^{\circ}\!\!\leq\,\theta\leq360^{\circ}$