Chapter 3 Review

1. Explain the difference between what is being asked in the following questions and complete the questions.

a) Factor
$$x^{2} + 5x + 6$$

$$(x + 2)(x + 3)$$
Just factor - can't
find x

- b) Solve by Factoring $x^{2} + 7x + 6 = 0$ (x+6)(x+1)=0 x+6=0 an x+1=0 x+6=0 at x+1=0 x=-6 x=-1 x=-6 x=-1
- 2. What is an extraneous root? Give an example.
- 3. What is the discriminant? What does the discriminant tell you? Give examples.

Discriminant - the radicand in the quadratic formula.

If
$$b^2$$
-4ac=0 | If b^2 -4ac>0 | If b^2 -4ac>0

I solution | 2 solutions | 0 solutions

4. Factor the following polynomials completely.

(a)
$$9(x-1)^2 - 100y^2$$
 (b)
= $(3(x-1)^2 - (10y)^2$
= $(3(x-1) + 10y)(3(x-1) - 10y)$
= $(3x-3+10y)(3x-3-10y)$

(b)
$$\frac{1}{4}x^2 + \frac{1}{2}x - 6$$

= $\frac{1}{4}x^2 + \frac{2}{4}x - \frac{24}{4}$
= $\frac{1}{4}(x^2 + 2x - 24)$
= $\frac{1}{4}(x + 6)(x - 4)$

(c)
$$0.1n^2 - 0.1n - 3$$

= $0.1 (n^2 - n - 30)$
= $0.1 (n - 6)(n + 5)$

(d) $4(x+3)^2 + 8(x+3) - 5$ a = x+3 $4a^2 + 8a - 5$ mn = 4(-5) = -20 $= 4a^2 + 10a - 2a - 5$ 10' - 2 = 2a(2a+5) - 1(2a+5) = (2a+5)(2a-1) = (2(x+3)+5)(2(x+3)-1)= (2x+6+5)(2x+6-1) = (2x+11)(2x+5) 5. Solve each equation by factoring.

(a)
$$x^{2} + 7x + 10 = 0$$

 $(x+5)(x+2) = 0$
 $x+5=0$ or $x+2=0$
 $x+5=0$ or $x+2=0$
 $x+5=0$ or $x+2=0$
 $x+5=0$ or $x+2=0$

(b)
$$x^2 - x = 6$$

 $x^2 - x - 6 = 0$
 $(x - 3)(x + 2) = 0$
 $x - 3 = 0$ $x + 2 = 0$
 $x = 3$ $x = -2$

(c)
$$8x^2 = 72x - 144$$

 $8x^2 - 72x + 144 = 0$
 8
 $x^2 - 9x + 18 = 0$
 $(x - 6)(x - 3) = 0$
 $x = 6$ $x = 3$

(d)
$$5x^{2} + 20 = -25x$$

 $5x^{2} + 25x + 20 = 0$
 $5x^{2} + 25x + 20 = 0$
 $5x^{2} + 5x + 4 = 0$

mn= 4(3)
= 12

$$4x^2 + 6x + 2x + 3 = 6$$

 $6x^2 = 12$
 $6x^2 = 12$

(f)
$$2x^2 - 5x = 0$$

 $x(2x-5)=6$
 $x = 0$
 $2x-5=0$
 $2x-5=0$
 $2x=5$
 $x = 5$

6. Write a quadratic equation that has the following solutions.

(a) -5,7

$$\chi = -5$$
 $\chi = 7$
 $\chi + 5 = 0$ $\chi - 7 = 0$
 $(\chi + 5)(\chi - 7) = 0$
 $\chi^2 - 7\chi + 5\chi - 35 = 0$
 $\chi^2 - 2\chi - 35 = 0$

(b)
$$2, \frac{4}{3}$$
 $x = \frac{4}{3}$
 $x = 2$ $3x = 4$
 $x - 2 = 6$ $3x - 4 = 6$
 $(x - 2)(3x - 4) = 6$
 $3x^2 - 4x - 6x + 8 = 6$
 $3x^2 - 10x + 8 = 0$

7. Solve each equation.

(a)
$$8x^2 - 7 = 249$$
 $47 + 7$
 $8x^2 = 256$
 $8x^2 = 256$

(c)
$$\frac{2(x-2)^2}{2} = \frac{18}{2}$$

 $(x-2)^2 = 9$
 $x-2 = \frac{1}{\sqrt{9}}$
 $x = 2-1$
 $x = 2 = 1$

(b)
$$(x+5)^2 = 49$$

 $x+5=\pm\sqrt{49}$ $x=-5+7=2$
 $x=-5\pm7$ $x=-5-7=-12$

(d)
$$\left(x - \frac{7}{5}\right)^2 = \frac{36}{25}$$

 $x - \frac{7}{5} = \frac{13}{25}$
 $x = \frac{7}{5} = \frac{13}{5}$
 $x = \frac{7}{5} = \frac{13}{5}$
 $x = \frac{7}{5} = \frac{13}{5}$

8. Solve each equation by completing the square.

(a)
$$3x^2 - 12x + 9 = 0$$

 $3x^2 - 12x + 9 = 0$
 $3x^2 - 4x + 3 = 0$
 $3x^2 - 4x + 3 = 0$
 $3x^2 - 4x + 3 = 0$
 $3x^2 - 4x + 4 - 4 + 3 = 0$
 $3x^2 - 4x + 4 - 4 + 3 = 0$
 $3x^2 - 4x + 4 - 4 + 3 = 0$
 $3x^2 - 4x + 4 - 4 + 3 = 0$
 $3x^2 - 4x + 4 - 4 + 3 = 0$

(b)
$$x^2 - 12x + 31 = 0$$

$$\frac{1}{2}(-12) = -6$$

$$\chi^2 - 12\chi + 36 - 36 + 3 = 0$$

$$(\chi^2 - 12\chi + 36) - 5 = 0$$

$$(\chi^2 - 12\chi + 36) - 5 = 0$$

$$(\chi - 6)^2 = 5$$

$$\chi - 6 = \pm \sqrt{5}$$

(c)
$$-\frac{4x^2 + 24x - 21}{-4} = 0$$

 $-\frac{4}{4} = 0$
 $\chi^2 - 6x + \frac{21}{4} = 0$
 $\chi^2 - 6x + 9 - 9 + \frac{21}{4} = 0$
 $(x^2 - 6x + 9) - \frac{36}{4} + \frac{21}{4} = 0$
 $\chi = 3 \pm \sqrt{15}$

9. Solve each equation with the quadratic formula.

(a)
$$4x^2 - 3x - 27 = 0$$
 $\alpha = 4$
 $b = -3$
 $c = -27$

$$2a$$

$$7 = -(-3) \pm \sqrt{(-3)^2 - 4(4)(-27)}$$

$$3 \pm \sqrt{9 + 432}$$

$$8$$

$$= 3 \pm \sqrt{441}$$

$$8$$

$$x = 3 - 21$$

$$8$$

(b)
$$x^{2}-10x+22=0$$
 $x=1$ $b=-10$ $c=22$

$$x=-\frac{(-10)^{2}-\sqrt{(-10)^{2}-4(1)(22)}}{2(1)}$$

$$=\frac{10^{2}-\sqrt{100-86}}{2}$$

$$=\frac{10^{2}-\sqrt{12}}{2}$$

$$=\frac{10^{2}-2\sqrt{3}}{2}$$

- 10. Use the discriminant to determine the number of solutions to each question. b^2-4ac
 - (a) $2x^2 9x + 4 = 0$ (-9)2-4(2)(4)
 - (c) $-6x^2 3x + 9 = 0$ (-3)2-4(-6)(9)
- 11. Solve the following.
 - (a) $x 1 = \frac{2}{x}$

$$\chi(\chi-1)=\chi(2)$$

$$\chi^2 - \chi = 2$$

$$\chi^2 - \chi - 2 = 0$$

$$(\chi-2)(\chi+1)=0$$

(c) $-2 - 3(x + 1)^2 = -50$

$$-\frac{3(x+1)^2}{-3} = -\frac{48}{-3}$$

$$x=3$$
 $x=-5$

(b) $-6x^2 + 7x - 5 = 0$ (7) - 4(-6)(-5)

(d) $-x^2 - 6x - 9 = 0$ = (-67-4(-1)(-9)

(b)
$$x(2x-3) + 4(x+1) = 2(3+2x)$$

$$2x^2 + x + 4 = 6 + 4x$$

-4x -6 -6 -4x mn= 2(-2)=-4

$$2x^2 - 3x - 2 = 0$$

$$2x^{2}-4x+x-2=0$$

$$(x-2)(2x+1)=0$$

$$(2x+3)^2-11(x+3)+15=0$$

$$(2x+3)^2-11(x+3)+15=0$$

$$(3x+1)=0$$

$$(3x+1)=0$$

$$(3x+1)=0$$

$$(3x+1)=0$$

$$(3x+1)=0$$

(d)
$$2(x+3)^2 - 11(x+3) + 15 = 0$$

mn=2(15)

$$(2x+1)(x)=0$$

$$\chi = \frac{1}{2} \quad \chi = 0$$

(e)
$$\frac{1}{4}x^{2} + \frac{1}{2}x = 1$$

4 $(\frac{1}{4}x^{2} + \frac{1}{2}x - 1) = 0 \times 4$
 $(x^{2} + 2x - 4) = 0$
 $(x^{2} + 2x - 4) = 0$

(f)
$$\sqrt{2x-7} + 5 = x$$

 -5 -5
 $\sqrt{2x-7}^2 = (x-5)^2$
 $2x-7 = (x-5)(x-5)$
 $2x-7 = x^2 - 16x + 25$
 $-2x+7$ $-2x+7$
 $6 = x^2 - 12x + 37$
 $0 = (x-4)(x-8)$
 $x = 4$ $x = 8$

11. The diagonal of a rectangle is 10 cm. The length is 2 cm longer than the width. Determine $\chi^{2} + (\chi + 2)^{2} = 10^{2}$ the width.

length = 8 cm

11. The height of a golf ball, in yards, is $h(d) = -0.02d^2 + 2d$, where d is the horizontal distance the ball has travelled, in yards, after being struck. Determine how far the ball travels before it first strikes the ground. (Note: Think of what the height is when it touches the height touches and o yords. ground).

$$h = -0.02d^{2} + 2d$$

$$0 = -0.02d^{2} + 2d$$

$$0 = -0.02d (d - 100)$$

$$d = 0$$

$$d = 100$$

The ball travels