

1. Explain the difference between what is being asked in the following questions and complete the questions.
a) Factor

$$
\begin{aligned}
& x^{2}+5 x+6 \\
& (x+2)(x+3)
\end{aligned}
$$

Just factor - cant find x
b) Solve by Factoring

$$
x^{2}+7 x+6=0
$$

$$
\begin{aligned}
& \left.x^{2}+x+6\right)(x+1)=0
\end{aligned}
$$

"Solve" La given that there is

$$
\begin{array}{ll}
(x+6)(x+1)=0 & \text { an" " " sign, } \\
x+6=0 \text { or } x+1=0 & \text { you can fin }
\end{array}
$$

$$
\begin{array}{rlrl}
x+6 & =0 \text { or } & x+1 & =0 \\
x & \text { you can find } \\
x & =-6 & x & =-1
\end{array}
$$

2. What is an extraneous root? Give an example.
3. What is the discriminant? What does the discriminant tell you? Give examples.

Discriminant - the radicand in the quadratic formula.

$$
\begin{aligned}
& \text { If } b^{2}-4 a c=0 \\
& \text { I solution } \\
& \text { 4. Factor the following polynomials completely. } \\
& \begin{array}{l}
\text { (a) } 9(x-1)^{2}-100 y^{2} \\
=\left(3(x-1)^{2}-(10 y)^{2}\right. \\
=(3(x-1)+10 y)(3(x-1)-10 y) \\
=(3 x-3+10 y)(3 x-3-10 y)
\end{array}
\end{aligned}
$$

$$
\text { if } b^{2}-4 a c \geqslant 0
$$

2 Solutions

If $b^{2}-4 a c \leqslant 0$

O solutions

$$
\text { (b) } \frac{1}{4} x^{2}+\frac{1}{2} x-6
$$

$$
=\frac{1}{4} x^{2}+\frac{2}{4} x-\frac{24}{4}
$$

$$
=\frac{1}{4}\left(x^{2}+2 x-24\right)
$$

$$
=\frac{1}{4}(x+6)(x-4)
$$

$$
\begin{aligned}
& \text { (c) } 0.1 n^{2}-0.1 n-3 \\
& =0.1\left(n^{2}-n-30\right) \\
& =0.1(n-6)(n+5)
\end{aligned}
$$

$$
\begin{array}{ll}
& \text { (d) } 4(x+3)^{2}+8(x+3)-5 \quad a=x+3 \\
& 4 a^{2}+8 a-5 \\
= & 4 a^{2}+10 a-2 a-5 \quad m n=4(-5)=-20 \\
= & 2 a(2 a+5)-1(2 a+5) \\
= & (2 a+5)(2 a-1) \\
= & (2(x+3)+5)(2(x+3)-1) \\
= & (2 x+6+5)(2 x+6-1)=(2 x+1)(2 x+5)
\end{array}
$$

5. Solve each equation by factoring.
(a) $x^{2}+7 x+10=0$
(b) x

$$
\begin{array}{ll}
(x+5)(x+2)=0 \\
x+5=0 & \text { or } \\
x+2=0 \\
-5-5 & -2-2 \\
x=-5 & x=-2
\end{array}
$$

(c) $8 x^{2}=72 x-144$

$$
\begin{aligned}
& \frac{8 x^{2}-72 x+144}{8}=\frac{0}{8} \\
& x^{2}-9 x+18=0 \\
& (x-6)(x-3)=0 \\
& x=6 \quad x=3
\end{aligned}
$$

$$
\begin{array}{cc}
m n=4(3) & \text { (e) } 4 x^{2}+8 x+3=0 \\
==12 & 4 x^{2}+6 x+2 x+3=0 \\
\underline{6} \times \frac{2}{2} & 2 x(2 x+3)+1(2 x+3)=0 \\
\underline{6}+\underline{2}=8 & (2 x+3)(2 x+1)=0 \\
& 2 x+3=0 \quad 2 x+1=0 \\
& x=\frac{-3}{2} \quad x=-\frac{1}{2}
\end{array}
$$

(d) $5 x^{2}+20=-25 x$

$$
\begin{aligned}
& \frac{5 x^{2}+25 x+20}{5}=\frac{0}{5} \\
& x^{2}+5 x+4=0 \\
& (x+4)(x+1)=0 \\
& x=-4 \quad x=-1
\end{aligned}
$$

(f) $2 x^{2}-5 x=0$

$$
\begin{array}{ll}
x(2 x-5)=0 \\
x=0 \quad 2 x-5=0 \\
2 x=5 \\
x=\frac{5}{2}
\end{array}
$$

6. Write a quadratic equation that has the following solutions.
(a) $-5,7$

$$
\begin{aligned}
& x=-5 \quad x=7 \\
& x+5=0 \quad x-7=0 \\
& (x+5)(x-7)=0 \\
& x^{2}-7 x+5 x-35=0 \\
& x^{2}-2 x-35=0
\end{aligned}
$$

(b) $2, \frac{4}{3}$

$$
x=\frac{4}{3}
$$

$$
x=2 \quad 3 x=4
$$

$$
x-2=0 \quad 3 x-4=0
$$

$$
(x-2)(3 x-4)=0
$$

$$
3 x^{2}-4 x-6 x+8=0
$$

$3 x^{2}-10 x+8=0$
7. Solve each equation.
(a)

$$
\left.\begin{aligned}
& 8 x^{2}-7=249 \\
& +7 \\
& \frac{8 x^{2}}{8}=\frac{256}{8} \\
& x^{2}=32
\end{aligned} \right\rvert\, \begin{aligned}
& x= \pm \sqrt{32} \\
& x= \pm \sqrt{16 \cdot 2} \\
& x= \pm 4 \sqrt{2}
\end{aligned}
$$

(c) $\frac{2(x-2)^{2}}{2}=\frac{18}{2}$

$$
\begin{aligned}
& (x-2)^{2}=9 \\
& x-2= \pm \sqrt{9} \\
& x=2 \pm 3
\end{aligned}
$$

$$
p x=2+3
$$

(b)

$$
\begin{aligned}
& (x+5)^{2}=49 \\
& x+5= \pm \sqrt{49} \\
& x=-5 \pm 7
\end{aligned} \rightarrow x=-5+7=2
$$

(d)

$$
\begin{aligned}
& \left(x-\frac{7}{5}\right)^{2}=\frac{36}{25} \\
& x-\frac{7}{5}= \pm \sqrt{\frac{36}{25}} \\
& x=\frac{7}{5} \pm \frac{6}{5}
\end{aligned} \rightarrow x=\frac{7}{5}+\frac{6}{5}=\left(\frac{13}{5}\right)
$$

$$
\begin{aligned}
& \frac{1}{2}(-4)=-2 \\
& \rightarrow(-2)^{2}=4
\end{aligned}
$$

$$
\left.\begin{aligned}
& x^{2}-4 x+3=0 \\
& x^{2}-4 x+4-4+3=0 \\
& \left(x^{2}-4 x+4\right)-1=0 \\
& (x-2)^{2}=1
\end{aligned} \right\rvert\, \begin{aligned}
& x-2= \pm \sqrt{1} \\
& x=2+1 \\
& x=3 \\
& x=1
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { (b) } x^{2}-12 x+31=0 \quad \frac{1}{2}(-12)=-6 \\
x^{2}-12 x+36-36+31=0 \\
\left(x^{2}-12 x+36\right)-5=0 \\
(x-6)^{2}=5 \\
x-6= \pm \sqrt{5}
\end{array}\right) \rightarrow x=6 \pm \sqrt{5}
$$

$$
\frac{1}{2}(-6)=-3
$$

(c) $\frac{-4 x^{2}+24 x-21}{-4}=\frac{0}{-4}$

$$
\rightarrow(-3)^{2}=a
$$

$$
\begin{aligned}
& x^{2}-6 x+\frac{21}{4}=0 \\
& x^{2}-6 x+9-9+\frac{21}{4}=0 \\
& \left(x^{2}-6 x+9\right)-\frac{36}{4}+\frac{21}{4}=0
\end{aligned} \quad\left\{\begin{array}{l}
(x-3)^{2}=\frac{15}{4} \\
x-3= \pm \sqrt{\frac{15}{4}} \\
x=3 \pm \frac{\sqrt{15}}{2}
\end{array}\right.
$$

$(\mathrm{d})^{4}\left(\frac{1}{4} x^{2}+x-\frac{7}{2}\right)=0 \times 4$

$$
\frac{1}{2}(4)=2
$$

$$
x^{2}+4 x-14=0
$$

$$
\begin{aligned}
& x^{2}+4 x+4-4-14=0 \\
& \left(x^{2}+4 x+4\right)-20=0
\end{aligned}
$$

$$
(x+2)^{2}=20
$$

9. Solve each equation with the quadratic formula.

$$
\begin{aligned}
& \text { (a) } 4 x^{2}-3 x-27=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& a=4 \quad b=-3 \quad c=-27 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(4)(-27)}}{2(4)} \\
& =\frac{3 \pm \sqrt{9+432}}{8} \rightarrow x=\frac{3+21}{8} \\
& \begin{aligned}
=\frac{3 \pm \sqrt{441}}{8} & x=\frac{3-21}{8} \\
& =\frac{-9}{4}
\end{aligned} \\
& \begin{aligned}
& \text { (b) } x^{2}-10 x+22=0 \\
& x=1 \quad b=-10 \quad c=22 \\
& x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(22)}}{2(1)} \\
&= \frac{10 \pm \sqrt{100-88}}{2} \\
&= \frac{10 \pm \sqrt{12}}{2} \\
&= \frac{10 \pm 2 \sqrt{3}}{2}
\end{aligned} \rightarrow x=5 \pm \sqrt{3} \\
& \begin{aligned}
& \text { (b) } x^{2}-10 x+22=0 \\
& x=1 \quad b=-10 \quad c=22 \\
& x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(22)}}{2(1)} \\
&= \frac{10 \pm \sqrt{100-88}}{2} \\
&=\frac{10 \pm \sqrt{12}}{2} \\
&=\frac{10 \pm 2 \sqrt{3}}{2}
\end{aligned} \rightarrow x=5 \pm \sqrt{3} \\
& \begin{aligned}
& \text { (b) } x^{2}-10 x+22=0 \\
& x=1 \quad b=-10 \quad c=22 \\
& x=\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(22)}}{2(1)} \\
&= \frac{10 \pm \sqrt{100-88}}{2} \\
&=\frac{10 \pm \sqrt{12}}{2} \\
&=\frac{10 \pm 2 \sqrt{3}}{2}
\end{aligned} \rightarrow x=5 \pm \sqrt{3}
\end{aligned}
$$

10. Use the discriminant to determine the number of solutions to each question. $b^{2}-4 a c$
(a)

$$
\text { a) } \begin{aligned}
& 2 x^{2}-9 x+4=0 \\
&(-9)^{2}-4(2)(4) \\
&= 81-32 \\
&= 49
\end{aligned}
$$

(c)

$$
\begin{aligned}
& -6 x^{2}-3 x+9=0 \\
& (-3)^{2}-4(-6)(9) \\
= & 9+216 \\
= & 225
\end{aligned}
$$

(b)

$$
\text { b) } \begin{aligned}
&-6 x^{2}+7 x-5=0 \\
&(7)^{2}-4(-6)(-5) \\
&= 49-120 \\
&=
\end{aligned}
$$

(d)

$$
\text { d) } \begin{aligned}
& -x^{2}-6 x-9=0 \\
= & (-6)^{2}-4(-1)(-9) \\
= & 36-36 \\
= & 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } x(2 x-3)+4(x+1)=2(3+2 x) \\
& 2 x^{2}-3 x+4 x+4=6+4 x \\
& \begin{array}{r}
2 x^{2}+x+4=6+4 x \\
-4 x-6-6-4 x
\end{array} \\
& \begin{array}{r}
2 x^{2}+x+4=6+4 x \\
-4 x-6-6-4 x
\end{array} \\
& m n=2(-2)=-4 \\
& 2 x^{2}-3 x-2=0 \\
& 2 x^{2}-4 x+x-2=0 \\
& \begin{array}{c}
2 x(x-2)+1(x-2)=0 \\
(x-2)(2 x+1)=0
\end{array} \\
& \begin{array}{l}
2 x(x-2)+1(x-2)=0 \\
(x-2)(2 x+1)=0
\end{array} \\
& \text { (d) } \\
& 2(x+3)^{2}-11(x+3)+15=0 \\
& 2 a^{2}-11 a+15=0 \\
& 2 a^{2}-5 a-6 a+15=0 \\
& a(2 a-5)-3(2 a-5)=0 \\
& \begin{array}{l}
(2 a-5)(a-3)=0 \\
(2(x+3)-5)(x+3-3)=0
\end{array} \\
& \begin{array}{l}
(2 a-5)(a-3)=0 \\
(2(x+3)-5)(x+3-3)=0
\end{array} \\
& (2 x+6-5)(x)=0 \\
& (2 x+1)(x)=0 \\
& x=\frac{-1}{2} \quad x=0 \\
& -4+1 \\
& x=2 \\
& 2 x+1=0 \\
& x=\frac{-1}{2} \\
& a=x+3 \\
& m n=2(15) \\
& =30 \\
& \text {. 5-6 }
\end{aligned}
$$

(e) $\frac{1}{4} x^{2}+\frac{1}{2} x=1$

$$
\begin{aligned}
& 4\left(\frac{1}{4} x^{2}+\frac{1}{2} x-1\right)=0 \times 4 \\
& x^{2}+2 x-4=6 \\
& x=\frac{-2 \pm \sqrt{2^{2}-4(1)(-4)}}{2(1)} \\
&=\frac{-2 \pm \sqrt{20}}{2} \\
&=\frac{-2 \pm 2 \sqrt{5}}{2}
\end{aligned}
$$

(f)

$$
\begin{aligned}
& \sqrt{2 x-7}+5=x \\
& -5 \quad-5 \\
& \sqrt{2 x-7}^{2}=(x-5)^{2} \\
& 2 x-7=(x-5)(x-5) \\
& 2 x-7=x^{2}-10 x+25 \\
& -2 x+7 \quad-2 x+7 \\
& 0=x^{2}-12 x+32 \\
& 0=(x-4)(x-8) \\
& x=4 \quad x=8
\end{aligned}
$$

11. The diagonal of a rectangle is 10 cm . The length is 2 cm longer than the width. Determine the width.

$$
\begin{aligned}
& x^{2}+(x+2)^{2}=10^{2} \\
& x^{2}+(x+2)(x+2)=100 \\
& x^{2}+x^{2}+4 x+4=100 \\
& \frac{2 x^{2}+4 x-96}{2}=\frac{8}{2} \\
& x^{2}+2 x-48=0 \\
& (x+8)(x-6)=0
\end{aligned}
$$

$$
x=6
$$

width $=6 \mathrm{~cm}$
length $=8 \mathrm{~cm}$
11. The height of a golf ball, in yards, is $h(d)=-0.02 d^{2}+2 d$, where d is the horizontal distance the ball has travelled, in yards, after being struck. Determine how far the ball travels before it first strikes the ground. (Note: Think of what the height is when it touches the ground).

$$
\begin{aligned}
& h=-0.02 d^{2}+2 d \\
& 0=-0.02 d^{2}+2 d \\
& 0=-0.02 d(d-100) \\
& d=0 \quad d=100
\end{aligned}
$$

