5.5b Multiplying Binomials

Monday, December 14, 2015 12:27 PM
5.5b Multiplying Binomials

Math 9 Notes
Name
Recall, a binomial is polynomial with 2 terms.
Using Algebra tiles a product of two binomials can be illustrated

We can find the area of each smaller rectangle and add them together,

$$
\begin{aligned}
& x^{2}+7 x+2 x+14 \\
= & x^{2}+9 x+14
\end{aligned}
$$

Therefore, $(x+7)(x+2)=x^{2}+7 x+2 x+14$

$$
=x^{2}+9 x+14
$$

We can expand $(x+7)(x+2)$ using the distributive property.

$$
\begin{aligned}
\text { There fore }(x+7)(x+2)= & x(x+2)+7(x+2) \\
& =x^{2}+2 x+7 x+1 y \\
& =x^{2}+9 x+14
\end{aligned}
$$

A way to remember this is called FOIL.
First, Outside, Inside, Last

Examples. Expand and simplify
1)

2) $(3 a-2)(a+4)$

$$
\begin{aligned}
& =x^{2}+3 x+8 x+24 \\
& =x^{2}+11 x+24
\end{aligned}
$$

$$
\begin{aligned}
& =3 a^{2}+12 a-2 a-8 \\
& =3 a^{2}+10 a-8
\end{aligned}
$$

Name \qquad Hint

$$
\begin{aligned}
& 3)(x-7)\left(x^{(x-3}\right) \\
= & x^{2}-3 x-7 x+21 \\
= & x^{2}-10 x+21
\end{aligned}
$$

$$
\text { 4) } \left.5[3+x)\left(\frac{1}{2}-x^{2}\right)\right]
$$

$$
\begin{aligned}
& 5\left(6-3 x^{2}+2 x-x^{3}\right) \\
& =30-15 x^{2}+10 x-5 x^{3} \\
& =-5 x^{3}-15 x^{2}+10 x+30
\end{aligned}
$$

5) $(3 a b+c)$

$$
\begin{aligned}
& =-6 a^{2} b^{2}+9 a b c-2 a b c+3 c^{2} \\
& =-6 a^{2} b^{2}+7 a b c+3 c^{2}
\end{aligned}
$$

Try this..... How do you think you would solve $(x+3)^{2} ? *$ then Assignment

$$
\begin{aligned}
& (x+3)(x+3) \\
= & x^{2}+6 x+9
\end{aligned}
$$

5.5b Multiplying Binomials

Math 9 Notes
Name

