e. $\sqrt{6-x}+4=x$
(1) $6-x \geqslant 0$

$$
x \leqslant 6
$$

(2)

$$
\begin{aligned}
& \sqrt{6-x}+4=x \\
& (\sqrt{6-x})^{2}=(x-4)^{2} \\
& 6-x=x^{2}-8 x+16 \\
& x^{2}-8 x+16-6+x=0 \\
& x^{2}-7 x+10=0 \\
& (x-5)(x-2)=0 \\
& x=5 \text { vas } \\
& x=2 \text { restriction. }
\end{aligned}
$$

check

$$
\begin{gathered}
\sqrt{6-2}+4=2 \\
\sqrt{4}+4=2 \\
2+4=2 \\
6 \neq 2
\end{gathered}
$$

$x=2$ is nod a solution, it is an extraneous root

$$
\begin{gathered}
\sqrt{6-5}+4=5 \\
1+4=5 \\
5=5 \\
x=5 \text { is a solution }
\end{gathered}
$$

All solutions of equations should be verified by substitution into the original equation. Sometimes a solution of a quadratic equation produces an exframe onus root, which means the number is a root to the equation but is not a solution the problem.
Quiz Thursday on 3.1 factoring oren book
useyour notes.
3.2

HWp.189-196\#5bd, bd, 8bd,10bd,12a, 13, 16,18

