1.2 squares and square roots

Unit 1: Square Roots \& The Pythagorean Theorem

1.2 Squares and Square Roots

There are two ways to determine if a number is a square number.

- If you can write a division sentence for a number so that thequoticnt is equal to the divisor, the number is a square number.
ex.
dividend divisor quotient
- You can also use factoring.

A factor is a number that divides exactly into another number.
Factors of a number occur in pairs
A number is a square number if it has an odd number of factors.
ex. Is 36 a square number?

The factors of 36 are: $1,2,3,4,6,9,12,18,36$
"pelfectsquae"

There are \qquad factors in total. This is an odd number, so 36 is a Square number.

In the ordered list of factors, notice that 6 is the middle number, and that $6 \times 6=36$.
6 is called the square root of 36 .
We write the square root of 36 as $\sqrt{36}$.
Squaring and taking the square root are called inverse operations.
So, $\sqrt{36}=6$ because $\quad 6^{2}=6 \times 6=36$
This means $\sqrt{6^{2}}=6$

Hint!
To find the square of a number; multiply the number by itself.

You can find a square root using a diagram of a square.
The \qquad area of the square is the square number.

The side length of the square is the square roo l of the area.

