3.1 Factoring Polynomial Expressions 10bd, 13,18hd, 20
Chapter 3.1 Factoring Polynomial Equations
Pre-Calculus 11
Name \qquad
Notes
Last year we spent a significant amount of time factoring. This section will review some of the factoring strategies we learned.

Example $1 \frac{1}{2} s d-4$ a factor of each trinomial? Justify the answer. $a d^{2}+b d-56$
if ${ }^{\text {a. } 2 d^{2}+6 d-56}$ de -4: factor then: $(d-4)(a d+b)=2 d^{2}+6 d-56$ $a d^{2}+b d-4 a d-4 b$
$=\left(a d^{2}+d(b-4 a)-4 b=2\right) d^{2}+6 d-56$
$=2 d^{2}+d(b-8)-4 b=2 d^{2}+6 d-56$

$$
-4 b=-56
$$

$$
=2 d^{2}+6 d^{b}=14-56=2 d^{2}+6 d-56
$$

yes $d-4$ is a factor.
b. $2 d^{2}+13 d+4$ you TRY

$$
\begin{gathered}
(d-4)(a d+b)=2 d^{2}+13 d+4 \\
a d^{2}+d(b-4 a)-4 b=2 d^{2}+13 d+4 \\
2 d^{2}+d(b-8)-4 b=2=2 d^{2}+13 d+4 \\
-1-8 b=21 \\
-4 b \\
b=-1 \\
2 d^{2}+\left(-9 d+4 \neq 2 d^{2}+(3 d+4\right.
\end{gathered}
$$

sone d-4 is not a factor.

Chapter 3.1 Factoring Polynomial Equations
Pre-Calculus 11
Name \qquad
Notes
Example 2 Factor each trinomial with rational coefficients.
a. $x^{2}-1.5 x+0.5 \quad\left(\frac{1}{10}\right)$
\rightarrow factor out a 0.1 to give integer coefficients.
$\frac{1}{10}$

$$
\begin{aligned}
& \left.\begin{array}{l}
0.1(\underbrace{\left.(10) x^{2}-15 x\right)}_{\text {factorthis. }}+\left(\frac{2}{a}\right) \quad\binom{\text { basically takeows } 0.1 \text { and }}{\text { multiply by }} \\
0.1\left(10 x^{2}-10 x-5 x+5\right.
\end{array}\right) \quad a c=10 \times 5=50 \quad\binom{-10}{-5)} \\
& =0.1(10 x(x-1)-5(x-1)) \\
& =0.1[(10 x-5)(x-1)] \\
& =0.5[(2 x-1)(x-1)]
\end{aligned}
$$

b. $x^{2}-\frac{17}{3} x-2$ youTRy factor out $\frac{1}{3}$

$$
\begin{aligned}
& \frac{1}{3}\left(3 x^{2}-17 x-6\right) \\
& \frac{1}{3}\left(3 x^{2}-18 x+(x-6)\right) \\
& \frac{1}{3}[(3 x(x-6)+(x-6)] \\
& \frac{1}{3}[(3 x+1)(x-6)]
\end{aligned}
$$

Chapter 3.1 Factoring Polynomial Equations
Pre-Calculus 11 \qquad
Notes
Some polynomial expressions contains functions of a variable, for instance x^{2}
$(x+3)^{2}-6(x+3)-16$ contains $f(x)=x+3$. Therefore we will use substitution to help us factor

Example 3 Factor each polynomial expression.

$$
\begin{array}{cccc}
\text { a. } x^{2}+5 x-24 & 2 \# 5 & x & -24 \\
(x-3)(x+8) & + & -3,+8
\end{array}
$$

b. $2(x-6)^{2}+10(x-6)-48$
use substitution to put int 0
let $a=x-6$

$$
a x^{2}+b x+c
$$

$$
\begin{gather*}
2 a^{2}+10 a-48 \\
2 a^{2}+16 a-\underbrace{-6 a+8}_{2 a-48}(a+8)
\end{gather*}
$$

2 factors

Xfacth $(a+8)(2 a-6)$ Now put $x-6$ back in!
fully! $\begin{aligned} & 2(a+8)(a-3) \\ & 2(x-6+8)(x-6-3)=2(x+2)(x-9) \\ & \text { c. } 3(2 x+5)^{2}+10(2 x+5)-8\end{aligned}$

Chapter 3.1 Factoring Polynomial Equations Pre-Calculus 11 \qquad
Example 4 Factor each polynomial expression using the Difference of Squares Pattern.
Example 4 Factor each polynomial expression using

$$
(a-b)(a+b)
$$

$$
\begin{aligned}
& a{ }^{a}{ }^{\text {b. }}(3 x+4)^{2}-(2 y-1)^{2} \\
& (a+b)(a-b) \\
= & {[(3 x+(4))+(2 y-1)][(3 x+4) \sigma(2 y-1)] } \\
= & (3 x+2 y+3)(3 x-2 y+5)^{4}+1
\end{aligned}
$$

STop hare.

$$
\begin{aligned}
& \text { c. 272x-32-75(y-4)} \\
& 3\left[9(9 x-3)^{2}-25(y-4)^{2}\right. \\
& \frac{L^{2}}{3^{2}} \quad(a+b)(a-b) \\
& 3\left[3^{2}(2 x-3)^{2}-5^{2}(y-4)^{2}\right] \\
& 3\left[3(2 x-3)+5(y-4)^{5}\right][3(2 x-3)-5(y-4)] \\
& 3[6 x-9)+5 y(-20)][6 x-9)-5 y(20)] \\
& 3[6 x+5 y-29][6 x-5 y+11]
\end{aligned}
$$

p.176-183 \#3bd, 4bd, 5bd, bd, 7b, 8,9, 10 bd, 13, 18bd,20

* see 3.1 fir an re examples.

