\qquad
Section 8.4: Similar Triangles
In any triangle, the sum of the angle measures is \qquad . So, to find the measure of any unknown angle start with 180° and Subtract the known measures.

Properties of Similar Triangles

$\angle A=180-50-50$
$\angle A=80^{\circ}$

Triangles are a special type of polygon. Two triangles are similar when:

- the measures of the corresponding angles \qquad ; OR
- the ratios of the lengths of corresponding sides \qquad are equal

The order in which similar triangles are named gives us information on the triangles.
(The symbol Δ means triangle and the symbol \sim means similar to)
For example, $\Delta \mathbf{A B C} \sim \Delta \mathbf{Q R P}$

$$
\text { angles: } \begin{aligned}
\angle A & =\angle Q \\
\angle B & =75^{\circ} \\
\angle R & =62^{\circ} \\
\angle C & =\angle P=43^{\circ}
\end{aligned}
$$

Example 1
Identify the similar triangles. Justify your answers.

$$
\begin{aligned}
& \frac{T S}{P Q}=\frac{6}{4}=\frac{3}{2} \\
& \frac{T R}{P R}=\frac{7.5^{2.5}}{5: 2.5}=\frac{3}{2} \\
& \frac{S R}{Q R}=\frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

Example 2
At a certain time of the day, a person who is 1.8 m tall has a shadow 1.3 m long. At the same time, a shadow of a totem pole is 6 m long. The sun's rays intersect the ground at equal angles. How tall is the totem pole to the nearest tenth of a meter?

$\triangle A B C \sim \triangle X Y Z$

Solve for $A B$:

$$
\begin{gathered}
S F=\frac{B C}{Y Z}=\frac{6}{1.3} \\
\frac{6}{1.3}=\frac{A B}{1.8} \quad A B=8.3 \mathrm{~m}
\end{gathered}
$$

Example 3
A surveyor wants to determine the width of a lake at two points on opposite sides of the lake. She measures distances and angles on land, and then sketches this diagram. How can the surveyor determine the length of HN to the nearest meter?

Example 4

A surveyor used this scale diagram to determine the width of a river. The measurements he made and the equal angles are shown. What is the width, $A B$, to the nearest tenth of a meter?

